Intermittent Inhaled Corticosteroids and Long-Acting Muscarinic Antagonists for Asthma

Number 194

Intermittent Inhaled Corticosteroids and Long-Acting Muscarinic Antagonists for Asthma

Prepared for:

Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov

Contract No. 290-2015-00012-I

Prepared by:

University of Connecticut Evidence-based Practice Center Storrs, CT

Investigators:

Diana M. Sobieraj, Pharm.D.
William L. Baker, Pharm.D.
Erin R. Weeda, Pharm.D.
Elaine Nguyen, Pharm.D., M.P.H.
Craig I. Coleman, Pharm.D.
C. Michael White, Pharm.D.
Stephen C. Lazarus, M.D.
Kathryn V. Blake, Pharm.D.
Jason E. Lang, M.D., M.P.H.

AHRQ Publication No. 17(18)-EHC027-EF March 2018

Addendum

An updated search was conducted for studies to address Key Questions (KQs) 1c and 2a-c. These KQs were related to the combined use of inhaled corticosteroids and long-acting beta agonists as controller and quick relief therapy and to the use of long-acting muscarinic antagonists as add-on therapy to inhaled corticosteroids. The original search was conducted in August 2016 using the earliest date for each database. This update was made on November 28, 2017. No new studies met inclusion criteria.

Key Messages

Purpose of Review

To assess the efficacy of intermittent inhaled corticosteroids in different populations of patients with asthma and to assess whether adding long-acting muscarinic antagonists improves outcomes for patients with uncontrolled, persistent asthma.

Key Messages

- In children less than 5 years old with recurrent wheezing, intermittent use of inhaled corticosteroids during an upper respiratory tract infection decreases asthma exacerbations
- In patients 12 years and older with persistent asthma:
 - o using inhaled corticosteroids intermittently may be as effective as using them as a controller medication
 - using inhaled corticosteroids and long-acting beta-agonists together as controller and quick relief therapy reduces asthma exacerbations compared to using inhaled corticosteroids alone or with long-acting beta agonist as a controller
- In patients 12 years and older with uncontrolled, persistent asthma, adding long-acting muscarinic antagonist to:
 - o inhaled corticosteroids reduces exacerbations and improves lung function
 - o inhaled corticosteroids and long-acting beta-agonist controllers improves asthma control and lung function

This report is based on research conducted by the University of Connecticut Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290-2015-00012-I). The National Institutes of Health (NIH) National Heart, Lung, and Blood Institute (NHLBI) sponsored the report. The findings and conclusions in this document are those of the authors, who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ or NIH/NHLBI. Therefore, no statement in this report should be construed as an official position of AHRQ, NIH/NHLBI, or the U.S. Department of Health and Human Services.

None of the investigators have any affiliations or financial involvement that conflicts with the material presented in this report.

The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information, i.e., in the context of available resources and circumstances presented by individual patients.

This report is made available to the public under the terms of a licensing agreement between the author and the Agency for Healthcare Research and Quality. This report may be used and reprinted without permission except those copyrighted materials that are clearly noted in the report. Further reproduction of those copyrighted materials is prohibited without the express permission of copyright holders.

AHRQ or U.S. Department of Health and Human Services endorsement of any derivative products that may be developed from this report, such as clinical practice guidelines, other quality enhancement tools, or reimbursement or coverage policies, may not be stated or implied.

This report may periodically be assessed for the currency of conclusions. If an assessment is done, the resulting surveillance report describing the methodology and findings will be found on the Effective Health Care Program Web site at www.effectivehealthcare.ahrq.gov. Search on the title of the report.

Persons using assistive technology may not be able to fully access information in this report. For assistance contact EffectiveHealthCare@ahrq.hhs.gov.

Suggested citation: Sobieraj DM, Baker WL, Weeda ER, Nguyen E, Coleman CI, White CM, Lazarus SC, Blake KV, Lang JE. Intermittent Inhaled Corticosteroids and Long-Acting Muscarinic Antagonists for Asthma. Comparative Effectiveness Review No. 194. (Prepared by the University of Connecticut Evidence-based Practice Center under Contract No. 290-2015-00012-I.) AHRQ Publication No. 17(18)-EHC027-EF. Rockville, MD: Agency for Healthcare Research and Quality; March 2018. Posted final reports are located on the Effective Health Care Program search page. DOI: https://doi.org/10.23970/AHRQEPCCER194.

Preface

The Agency for Healthcare Research and Quality (AHRQ), through its Evidence-based Practice Centers (EPCs), sponsors the development of evidence reports and technology assessments to assist public- and private-sector organizations in their efforts to improve the quality of health care in the United States. The National Institutes of Health (NIH) National Heart, Lung, and Blood Institute (NHLBI) requested and provided funding for the report.

The reports and assessments provide organizations with comprehensive, evidence-based information on common medical conditions and new health care technologies and strategies. They also identify research gaps in the selected scientific area, identify methodological and scientific weaknesses, suggest research needs, and move the field forward through an unbiased, evidence-based assessment of the available literature. The EPCs systematically review the relevant scientific literature on topics assigned to them by AHRQ and conduct additional analyses when appropriate prior to developing their reports and assessments.

To bring the broadest range of experts into the development of evidence reports and health technology assessments, AHRQ encourages the EPCs to form partnerships and enter into collaborations with other medical and research organizations. The EPCs work with these partner organizations to ensure that the evidence reports and technology assessments they produce will become building blocks for health care quality improvement projects throughout the Nation. The reports undergo peer review and public comment prior to their release as a final report.

AHRQ expects that the EPC evidence reports and technology assessments, when appropriate, will inform individual health plans, providers, and purchasers as well as the health care system as a whole by providing important information to help improve health care quality.

If you have comments on this evidence report, they may be sent by mail to the Task Order Officers named below at: Agency for Healthcare Research and Quality, 5600 Fishers Lane, Rockville, MD 20857, or by email to epc@ahrq.hhs.gov.

Gopal Khanna M.B.A

Director

Agency for Healthcare Research and Quality

Arlene S. Bierman, M.D., M.S.

Director

Center for Evidence and Practice

Improvement

Agency for Healthcare Research and Quality

Stephanie Chang, M.D., M.P.H.

Director

Evidence-based Practice Center Program

Center for Evidence and Practice Improvement

Agency for Healthcare Research and Quality

Aysegul Gozu, M.D., M.P.H.

Task Order Officer

Center for Evidence and Practice

Improvement

Agency for Healthcare Research and Quality

David W. Niebuhr, M.D., M.P.H., M.Sc.

Task Order Officer

Center for Evidence and Practice

Improvement

Agency for Healthcare Research and Quality

Acknowledgments

The authors gratefully acknowledge the contribution of the EPC librarian, Sharon Giovenale, for her contribution to the literature search and citation retrieval process. We would like to acknowledge the affiliations of our content experts:

Stephen C. Lazarus, M.D.
Professor of Medicine
Division of Pulmonary & Critical Care Medicine
University of California, San Francisco
San Francisco, CA

Kathryn V. Blake, Pharm.D. Director, Center for Pharmacogenomics and Translational Research Nemours Children's Specialty Care Jacksonville, FL

Jason E. Lang, M.D., M.P.H. Division of Allergy, Immunology and Pulmonary Medicine Duke University School of Medicine Duke Children's Hospital and Health Center

Technical Expert Panel

In designing the study questions and methodology at the outset of this report, the EPC consulted several technical and content experts. Broad expertise and perspectives were sought. Divergent and conflicted opinions are common and perceived as healthy scientific discourse that results in a thoughtful, relevant systematic review. Therefore, in the end, study questions, design, methodologic approaches, and/or conclusions do not necessarily represent the views of individual technical and content experts.

Technical Experts must disclose any financial conflicts of interest greater than \$10,000 and any other relevant business or professional conflicts of interest. Because of their unique clinical or content expertise, individuals with potential conflicts may be retained. The TOO and the EPC work to balance, manage, or mitigate any potential conflicts of interest identified.

The list of Technical Experts who provided input to this report follows:

Robyn Cohen, M.D., M.P.H. Assistant Professor of Pediatrics Boston University School of Medicine Boston, MA

Nicola Hanania, M.B.B.S. Associate Professor of Medicine-Pulmonary Baylor College of Medicine Houston, TX H. William Kelly, Pharm.D.*
Professor Emeritus of Pediatrics and Pharmacy
University of New Mexico Health Sciences Center
Albuquerque, NM

Wendy C. Moore, M.D. Associate Professor of Pulmonary, Critical Care and Allergy and Immunologic Medicine Wake Forest University School of Medicine Winston-Salem, NC

Michael Schatz, M.D., M.S.* Kaiser Permanente Medical Care Program San Diego, CA

Stanley Szefler, M.D.* Director Pediatric Asthma Research Program at Children's Hospital Colorado Aurora, CO

*Provided input on Draft Report

Peer Reviewers

Prior to publication of the final evidence report, EPCs sought input from independent Peer Reviewers without financial conflicts of interest. However, the conclusions and synthesis of the scientific literature presented in this report do not necessarily represent the views of individual reviewers.

Peer Reviewers must disclose any financial conflicts of interest greater than \$10,000 and any other relevant business or professional conflicts of interest. Because of their unique clinical or content expertise, individuals with potential nonfinancial conflicts may be retained. The TOO and the EPC work to balance, manage, or mitigate any potential nonfinancial conflicts of interest identified.

The list of Peer Reviewers follows:

William Busse, M.D.
Professor
Department of Medicine
School of Medicine and Public Health
University of Wisconsin

Fernando Martinez, M.D.
Regent's Professor
Director, Asthma and Airways Disease Research Center
Swift-McNear Professor of Pediatrics
College of Medicine, Tucson
The University of Arizona Health Sciences
Tucson, AZ

Natalie Napolitano, M.P.H., RRT-NPS, FAARC Research Clinical Specialist Respiratory Therapy Department The Children's Hospital of Philadelphia Philadelphia, PA

Intermittent Inhaled Corticosteroids and Long-Acting Muscarinic Antagonists for Asthma

Structured Abstract

Objective. To assess efficacy of intermittent inhaled corticosteroid (ICS) therapy in different populations (0 to 4 years old with recurrent wheezing, 5 years and older with persistent asthma, with or without long-acting beta agonist [LABA]), and to assess efficacy of added long-acting muscarinic antagonist (LAMA) in patients 12 years and older with uncontrolled, persistent asthma.

Data sources. MEDLINE[®], Embase[®], Cochrane Central, and Cochrane Database of Systematic Reviews bibliographic databases from earliest date through March 23, 2017; hand searches of references of relevant studies; www.clinicaltrials.gov and the International Controlled Trials Registry Platform.

Review methods. Two investigators screened abstracts of identified references for eligibility and subsequently reviewed full-text files. We abstracted data, performed meta-analyses when appropriate, assessed the risk of bias of each individual study, and graded the strength of evidence for each comparison and outcome. Outcomes for which data were extracted included exacerbations, mortality, asthma control composite scores, spirometry, asthma-specific quality of life, and rescue medication use.

Results. We included 56 unique studies (54 randomized controlled trials, 2 observational studies) in this review. Compared to rescue short-acting beta-agonist (SABA) use, adding intermittent ICS reduces the risk of exacerbation requiring oral steroids and improves caregiver quality of life in children less than 5 years old with recurrent wheezing in the setting of a respiratory tract infection (RTI). In patients 12 years and older with persistent asthma, differences in intermittent ICS versus controller use of ICS were not detected, although few studies provided evidence, leading to primarily low strength of evidence ratings. Using ICS and LABA as both a controller and quick relief therapy reduced the risk of exacerbations and improved symptom control in patients 12 years and older compared to ICS controller (with or without LABA). Data in patients 4 to 11 years old suggest lower risk of exacerbations with ICS and LABA controller and quick relief use, but with a lower strength of evidence than in the older population. In patients 12 years and older with uncontrolled, persistent asthma, LAMA versus placebo as add-on to ICS reduces the risk of exacerbations requiring systemic corticosteroids and improves lung function measure through spirometry. Current evidence does not suggest that a difference exists in the efficacy of LAMA versus LABA as add-on to ICS. Triple therapy of ICS, LAMA, and LABA improves lung function measured through spirometry, although the risk of exacerbation was not different versus ICS and LABA.

Conclusions. Intermittent ICS added to SABA during an RTI provides benefit to patients less than 5 years of age with recurrent wheezing. In patients 12 years and older with persistent asthma, differences in intermittent ICS versus controller use of ICS were not detected, although few studies provided evidence for this question. In patients 12 years and older with persistent asthma, using ICS and LABA as both a controller and quick relief therapy may be more effective

at preventing exacerbations than ICS controller (with or without LABA). LAMA is effective in the management of uncontrolled, persistent asthma in patients 12 years of age and older, and current evidence does not suggest a difference between LAMA and LABA as add-on to ICS.

Contents

Evidence SummaryE	S-1
IntroductionIntroduction	1
Background	1
Rationale	1
Intermittent Inhaled Corticosteroid (ICS) Dosing	
Long-Acting Muscarinic Antagonist (LAMA) Added to ICS or to ICS Plus LABA	2
Key Questions (KQs)	2
Population, Intervention, Comparator, Outcomes	3
Methods	6
Results	. 11
Search Results	
Organization of This Report	. 12
KQ1a: What is the comparative effectiveness of intermittent inhaled corticosteroid	
(ICS) compared to no treatment, pharmacologic, or nonpharmacologic therapy in	
children 0 to 4 years old with recurrent wheezing?	. 13
Key Points	
Intermittent ICS With As-Needed SABA Versus As-Needed SABA	. 13
Intermittent ICS With As-Needed SABA Versus ICS Controller With As-Needed SABA	15
Intermittent ICS Versus No Therapy	. 16
KQ1b: What is the comparative effectiveness of intermittent ICS compared to ICS	
controller therapy in patients 5 years of age and older with persistent asthma?	. 16
Key Points	
Intermittent ICS and ICS Controller Versus ICS Controller	
Intermittent ICS Versus ICS Controller	
KQ1c: What is the comparative effectiveness of ICS with long-acting beta agonist (LABA)	
used as both controller and quick relief therapy compared to ICS with or without LABA used	ed
as controller therapy in patients 5 years of age and older with persistent asthma?	. 23
Key Points—ICS and LABA Controller and Quick Relief Versus ICS Controller	. 24
Key Points—ICS and LABA Controller and Quick Relief Versus ICS and LABA Contro	
Key Points—ICS and LABA Controller and Quick Relief Versus CBP	. 24
ICS and LABA as Controller and Quick Relief Versus ICS Controller at the Same	
Comparative ICS Dose	. 25
ICS and LABA as Controller and Quick Relief Versus ICS Controller at a Higher	
Comparative ICS Dose	. 26
ICS and LABA as Controller and Quick Relief Versus ICS and LABA Controller at the	
Same Comparative ICS Dose	. 28
ICS and LABA as Controller and Quick Relief Versus ICS and LABA Controller at a	
Higher Comparative ICS Dose	. 33
ICS and LABA as Controller and Quick Relief Versus ICS and LABA Controller at a	
Lower Comparative ICS Dose	
ICS and LABA as Controller and Quick Relief Versus CBP	
KQ2a: What is the comparative effectiveness of long-acting muscarinic antagonist (LAMA)) as
add-on to ICS controller therapy compared to placebo or increased ICS dose in patients 12	_
years of age and older with uncontrolled, persistent asthma?	. 39

Key Points—LAMA Versus Placebo as Add-on to ICS	39
Key Points—LAMA Add-on to ICS Versus Increasing ICS Dose	
LAMA Versus Placebo as Add-on to ICS	
LAMA as Add-on to ICS Versus Increasing the ICS Dose	43
KQ2b: What is the comparative effectiveness of LAMA compared to other controll	
as add-on to ICS in patients 12 years of age and older with uncontrolled, persistent	
Key Points	
LAMA Versus LABA as Add-on to ICS	
LAMA Versus Other Controllers as Add-on to ICS	
KQ2c: What is the comparative effectiveness of LAMA as add-on to ICS plus LAE	
compared to ICS plus LABA as controller therapy in patients 12 years of age and o	lder with
uncontrolled, persistent asthma?	
Key Points	
LAMA as Add-on to ICS Plus LABA Versus ICS Plus LABA	49
LAMA as Add-on to ICS Plus LABA Versus ICS Plus LABA With a Higher ICS	S Dose 51
Discussion	
Overview and Applicability	
Key Question 1a	52
Key Question 1b	52
Key Question 1c	53
Key Question 2	54
Limitations	55
Future Research Needs	56
Conclusions	57
References	58
Glossary	69
Abbreviations	70
Tables	
Table A. Drugs included in the review	
Table B. Results for patients 0 to 4 years of age with recurrent wheezing	
Table C. Results for patients 5 to 11 years of age with persistent asthma	
Table D. Results for patients 12 years of age and older with persistent asthma	
Table E. Results for patients 12 years of age and older with uncontrolled, persistent as	
Table 1. Drugs included in this review	3
Table 2. Intervention and comparator per Key Question	
Table 3. Inclusion and exclusion criteria	
Table 4. Thresholds for clinical significance	
Table 5. Number of studies included per KQ, study design, and age group	
Table 6. Evidence overview for KQ1a, intermittent ICS with as-needed SABA versus	
SABA	
Table 7. Evidence overview for KQ1a, intermittent ICS with as-needed SABA versus	
controller with as-needed SABA	
Table 8. Evidence overview for KQ1a, intermittent ICS versus no therapy	
Table 9. Evidence overview for KQ1b, intermittent ICS with ICS controller versus IC	
in patients 12 years of age and older	17

Table 10. Evidence overview for KQ1b, intermittent ICS with ICS controller versus ICS
controller in patients 4 to 11 years of age18
Table 11. Evidence overview for KQ1b, intermittent ICS versus ICS controller in patients 12
years of age and older20
Table 12. Evidence overview for KQ1b, intermittent ICS versus ICS controller in patients 4 to 11
years of age22
Table 13. Evidence overview for KQ1c, ICS and LABA controller and quick relief versus ICS
controller (same dose) in patients 12 years of age and older25
Table 14. Evidence overview for KQ1c, ICS and LABA controller and quick relief versus ICS
controller (higher dose) in patients 12 years of age and older
Table 15. Evidence overview for KQ1c, ICS and LABA controller and quick relief versus ICS
controller (higher dose) in patients 4 to 11 years of age
Table 16. Evidence overview for KQ1c, ICS and LABA controller and quick relief versus ICS
and LABA controller (same dose) in patients 12 years of age and older28
Table 17. Evidence overview for KQ1c, ICS and LABA controller and quick relief versus ICS
and LABA controller (same dose) in patients 4 to 11 years old
Table 18. Evidence overview for KQ1c, ICS and LABA controller and quick relief versus ICS
and LABA controller (higher dose) in patients 12 years of age and older32
Table 19. Evidence overview for KQ1c, ICS and LABA controller and quick relief versus ICS
and LABA controller (lower dose) in patients 12 years of age and older35
Table 20. Evidence overview for KQ1c, ICS and LABA controller and quick relief versus CBP
in patients 12 years of age and older
Table 21. Evidence overview for KQ2a, LAMA as add-on to ICS versus placebo39
Table 22. Evidence overview for KQ2a, LAMA as add-on to ICS versus doubling the ICS dose40
Table 23. Evidence overview for KQ2b, LAMA versus LABA as add-on to ICS42
Table 24. Evidence overview for KQ2b, LAMA versus montelukast as add-on to ICS44
Table 25. Evidence overview for KQ2b, LAMA versus doxofylline as add-on to ICS46
Table 26. Evidence overview for KQ2c, LAMA added to ICS plus LABA versus ICS plus
LABA
Table 27. Evidence overview for KQ2c, LAMA added to ICS plus LABA versus doubling the
ICS dose plus LABA
Teb dose plus Existr
Figures
Figure A. Scope of reviewES-2
Figure 1. Analytic framework10
Figure 2. Literature flow diagram for KQs 1a, 1b, and 1c
Figure 3. Literature flow diagram for KQs 2a, 2b, and 2c
Figure 4. Risk of requiring a course of oral steroids: intermittent ICS with as-needed SABA
versus as-needed SABA
Figure 5. Risk of exacerbations requiring oral corticosteroid: Intermittent ICS and ICS controller
versus ICS controller
Figure 6. Figure 6. Risk of exacerbation: ICS and LABA controller and quick relief versus ICS
and LABA controller (same dose)
Figure 7. Risk of exacerbation: ICS and LABA controller and quick relief versus ICS and LABA
controller (higher dose)
Figure 8. Risk of exacerbation: ICS and LABA controller and quick relief versus CBP38

Figure 9. Risk of exacerbation and of asthma worsening with LAMA versus placebo as add-o	
ICS	41
Figure 10. Risk of exacerbation with LAMA versus LABA as add-on to ICS	45
Figure 11. Risk of exacerbation and of asthma worsening with LAMA as add-on to ICS and	
LABA versus ICS and LABA	49
Appendixes	
Appendix A. Search Strategy	
Appendix B. List of Excluded Studies	
Appendix C. Study Characteristics	
Appendix D. Risk of Bias Assessment	
Appendix E. Strength of Evidence Assessments	
Appendix F. Forest Plots	

Evidence Summary

Objectives and Rationale for the Review

This report summarizes a systematic review of intermittent inhaled corticosteroids and long-acting muscarinic antagonists for asthma, and identifies needs for future research. This was one of the six high priority topics within asthma identified by a National Heart, Lung, and Blood Institute Advisory Council Asthma Expert Working group.¹

The objectives of the systematic review are:

- To assess efficacy of *intermittent inhaled corticosteroid (ICS) therapy* in different populations:
 - o Patients 0 to 4 years old with recurrent wheezing
 - o Patients 5 years and older with persistent asthma (with or without long-acting beta agonist (LABA)
- To assess efficacy of *adding long-acting muscarinic antagonist* (LAMA) to ICS with or without LABA in:
 - o Patients 12 years and older with uncontrolled, persistent asthma.

Background

Scheduled, daily dosing of ICS is the preferred pharmacologic controller therapy for persistent asthma in patients of all ages.¹

"Controller therapy" describes medications taken daily on a long-term basis to achieve and maintain control of persistent asthma.² Rather than being taken for immediate symptom relief, controller therapy is intended to reduce future exacerbations and the need for immediate symptom relief. In this report, controller medications are defined by the timing and indication for use rather than by mechanism of action.

"Quick relief" therapy describes medications used as needed upon onset of symptoms for acute symptom relief. Likewise, for this report, quick relief therapy is defined by the timing and indication for use rather than by mechanism of action.

Worsening control of asthma or other criteria may prompt changes in prescription therapy, such as intermittent dosing.

"Intermittent" dosing describes the use of medication that may vary in the dose, frequency, or duration of administration. Some examples of intermittent ICS dosing include initiating a temporary course of ICS or temporarily increasing the dose of ICS that is otherwise taken as controller therapy.

An extension of intermittent ICS therapy is the use of ICS and LABA as controller therapy both on a regular basis and on immediate symptom onset for quick relief therapy.³

LAMA represents a new pharmacologic class of long-acting bronchodilators that have been studied as a controller therapy for asthma. At least one LAMA has gained Food and Drug

Administration (FDA) approval for the long-term maintenance treatment of asthma in patients 6 years and older.⁴

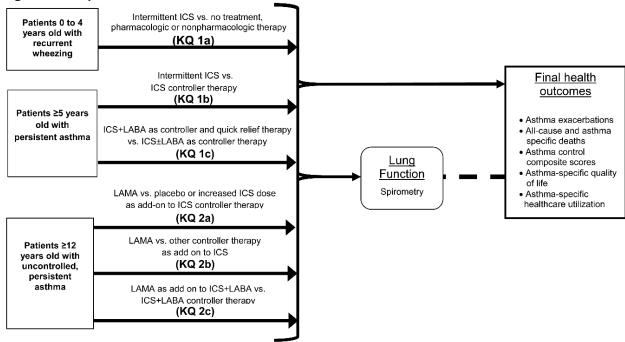

The review focuses on drugs as a class, as described in Table A.

Table A. Drugs included in the review

Class	Drugs
ICS	Beclomethasone, ^a budesonide, ^a ciclesonide, ^a Flunisolide, ^a fluticasone, ^a mometasone, ^a triamcinolone ^b
LABA	Arformoterol, formoterol, a olodaterol, salmeterol, vilanterol, a,c
LAMA	Aclidinium, glycopyrrolate, tiotropium, umeclidinium

FDA = Food and Drug Administration; ICS = inhaled corticosteroid; LABA = long-acting β_2 -agonist; LAMA = long-acting muscarinic antagonist

Figure A. Scope of review

ICS = inhaled corticosteroid; KQ = Key Question; LABA = long-acting beta agonist; LAMA = long-acting muscarinic antagonist

Data Sources

Data sources were MEDLINE®, Embase®, Cochrane Central, and Cochrane Database of Systematic Reviews bibliographic databases from earliest date through March 23, 2017; hand searches of references of relevant studies; www.clinicaltrials.gov and the International Controlled Trials Registry Platform. The systematic review protocol is available in the full report.

^a Currently with FDA approval for asthma, either as a single ingredient product or as a component of a multi-ingredient product.

^b Previously FDA approved, although discontinued in 2010.

[°]Considered an ultra-long-acting β_2 -agonist.

Results

We found 56 unique studies (54 randomized controlled trials, 2 observational studies) in this review. Fifteen randomized controlled trials were specific to LAMA therapy in patients 12 years and older with persistent uncontrolled asthma. An overview of the results is presented in Tables B through E.

Table B. Results for patients 0 to 4 years of age with recurrent wheezing

Table B. Results for patients 0 to 4 years of age with recurrent wheezing			
Intervention		Effect	
Intermittent ICS with SABA prn vs. SABA prn at the onset of a URI	• I	Reduces the risk of exacerbation requiring oral corticosteroids (moderate SOE) mproves QOL (low SOE) Does not affect: O Other measures of exacerbation (low or high SOE) Rescue medication use (low SOE)	
Intermittent ICS vs. ICS controller	• C	(low SOE) Hospitalization (low SOE)	
Intermittent ICS vs. no therapy	• N	No conclusion possible (insufficient SOE)	
Intermittent ICS vs. nonpharmacologic therapy	• 1	No conclusion possible (insufficient SOE)	

ICS = inhaled corticosteroid; QOL = quality of life; SABA = short-acting beta agonist; SOE = strength of evidence; URI = upper respiratory infection

Table C. Results for patients 5 to 11 years of age with persistent asthma

Intervention		Effect
Intermittent ICS vs. ICS controller	•	Does not affect: o QOL (low SOE) o Rescue medication use (low SOE) No conclusion possible for other outcomes (insufficient SOE)
ICS combined with LABA as controller and quick relief vs. a higher ICS controller dose	•	Reduces the risk of exacerbations measured as a composite outcome (low SOE)
ICS combined with LABA as controller and quick relief vs. ICS and LABA as controller at the same ICS dose	•	Reduces the risk of exacerbations measured as a composite outcome (low SOE)

ICS = inhaled corticosteroid; LABA = long-acting beta agonist; QOL = quality of life; SOE = strength of evidence

Table D. Results for patients 12 years of age and older with persistent asthma

Intervention	Effect		
Intermittent ICS and ICS controller vs. ICS controller	 Does not affect the risk of exacerbations, regardless of definition (low SOE) Decreases asthma-related outpatient visits (low SOE). 		
Intermittent ICS vs. ICS controller ICS combined with LABA as controller and quick relief vs. the same ICS controller dose	Does not affect: The risk of exacerbation regardless of definition (low SOE) Asthma control scores (low SOE) Spirometry (low to high SOE) QOL (moderate SOE) Rescue medication use (moderate SOE) Reduces: The risk of exacerbations defined as a composite outcome (moderate SOE)		
	 Rescue medication use (low SOE) Improves spirometry (moderate SOE) 		
ICS combined with LABA as controller and quick relief vs. a higher ICS controller dose	Reduces the risk of exacerbations defined as a composite outcome (low SOE)		

Intervention	Effect		
ICS combined with LABA as controller and quick relief vs. ICS and LABA as controller at the same ICS dose	Reduces: The risk of exacerbations defined as a composite outcome (high SOE) Rescue medication use (low SOE) Improves asthma control scores (moderate SOE)		
ICS combined with LABA as controller and quick relief vs. ICS and LABA as controller at a higher ICS dose	Reduces the risk of exacerbations defined as a composite outcome (high SOE)		
ICS combined with LABA as controller and quick relief vs. conventional best practice of ICS with or without LABA as controller	Reduces: The risk of exacerbations defined as a composite outcome (moderate SOE) Rescue medication use (moderate SOE) Improves asthma control scores (moderate SOE)		

ICS = inhaled corticosteroid; LABA = long-acting beta agonist; QOL = quality of life; SOE = strength of evidence

Table E. Results for patients 12 years of age and older with uncontrolled, persistent asthma

Intervention	Effect		
Adding LAMA to ICS vs. adding placebo	 Reduces the risk of exacerbations requiring systemic corticosteroids (high SOE) Improves spirometry (high SOE) Does not affect: Asthma control scores (moderate SOE) QOL (low to high SOE) Rescue medication use (moderate SOE) 		
Adding LAMA to ICS vs. doubling ICS dose	Does not affect: The risk of exacerbations requiring systemic corticosteroids (low SOE) Asthma control scores (low SOE) Spirometry (low SOE) QOL (low SOE)		
Adding LAMA to ICS vs. adding LABA	Does not affect: The risk of exacerbations requiring systemic corticosteroids (low SOE) Death (low SOE) Asthma control scores (low to high SOE) Spirometry (low to high SOE) QOL (low to high SOE) Rescue medication use (low SOE)		
Adding LAMA to ICS and LABA vs. ICS and LABA	 Does not affect The risk of exacerbations requiring systemic corticosteroids (moderate SOE) Hospitalization (low SOE) Improves Asthma control scores (low to moderate SOE) Spirometry (high SOE) 		

ICS = inhaled corticosteroid; LABA = long-acting beta agonist; LAMA = long-acting muscarinic antagonist; QOL = quality of life; SOE = strength of evidence

Discussion

This review evaluated different ICS dosing strategies and LAMA therapy in people of various ages with persistent asthma. Comparisons were class-based and thus this review does not inform the impact of specific doses on outcomes; rather, it more globally addresses classes and broad dosing strategies (i.e. intermittent dosing of ICS). Although effectiveness is an important part of decision-making, this report did not include harms associated with drug therapies, which should also be taken into consideration.

There is a relatively smaller amount of published evidence on intermittent ICS dosing as compared to the amount of evidence on combined ICS and LABA as quick relief and controller therapy or LAMA therapy. This lack of evidence should not be equated to lack of benefit necessarily. Given most outcomes were rated with low strength of evidence, future research could change the direction or magnitude of effect or the strength of evidence as the consistency and precision in effect estimates improve.

Conclusions

Compared to rescue SABA use, adding intermittent ICS use appears to benefit children less than 5 years old with recurrent wheezing in the setting of an RTI. In patients 12 years and older with persistent asthma, differences in intermittent ICS versus controller use of ICS were not detected, although few studies provided evidence leading to primarily low strength of evidence ratings. Using ICS and LABA combined as both a controller and quick relief therapy showed benefits over use as a controller medication alone (ICS or ICS and LABA controller). In patients 12 years and older with uncontrolled, persistent asthma, adding LAMA to ICS controller or ICS plus LABA controller compared to ICS or ICS plus LABA alone improves some outcomes. However, adding LAMA to ICS controller compared to adding LABA to ICS controller or increasing dosage of ICS controller did not improve outcomes.

References

- National Heart, Lung and Blood Advisory Council Asthma Expert Working Group. Needs Assessment Report for Potential Update of the Expert Panel Report-3 (2007): Guidelines for the Diagnosis and Management of Asthma. 2015.
- Expert Panel Report 3: guidelines for the diagnosis and management of asthma. National Asthma Education and Prevention Program, Third Expert Panel on the Diagnosis and Management of Asthma. Bethesda (MD). Report No: 07-4051. Washington, DC: National Heart, Lung, and Blood Institute; 2007.
- 3. Peters M. Single-inhaler combination therapy for maintenance and relief of asthma. Drugs 2009;69:137-150. PMID: 19228072.
- Spiriva Respimat [package insert].
 Boehringer Ingelheim Pharmaceuticals, Inc.
 Ridgefield, CT. 2016.

Introduction

Background

Asthma is a chronic inflammatory disorder of the airways, characterized by varying degrees of airflow obstruction. Bronchoconstriction, inflammatory cell infiltration, and airway edema reduce airflow intermittently, often in response to specific exposures, resulting in respiratory symptoms. In the United States, the prevalence of asthma has increased over the past decade, from an estimated 22.2 million Americans in 2005 to 24.6 million Americans in 2015. Asthma can significantly impact patients' and families' quality of life and ability to pursue activities such as school, work, and exercise. Globally, asthma ranks 14th based on the burden of disease, as measured by disability adjusted life years. In the US, asthma contributes significantly to health care resource utilization and associated costs. For example, in 2012, asthma was one of the top twenty leading diagnosis groups for primary care visits and was the main reason for 1.8 million emergency department visits and 439,000 hospitalizations. While the severity of disease varies between patients and over time in the same patient, asthma can be fatal, accounting for approximately 1 death per 100,000 Americans. In 2015, 3,651 Americans died from asthma.

Rationale

In 1989, the National Heart, Lung and Blood Institute (NHLBI) initiated the National Asthma Education and Prevention Program (NAEPP) to address growing concern about asthma in the US. One of the first accomplishments of the NAEPP was to convene a panel of experts who summarized their recommendations in a document, National Asthma Education and Prevention Program Expert Panel Report (EPR): Guidelines for the Diagnosis and Management of Asthma, in 1991. The guidelines address the diagnosis, evaluation, and treatment of asthma. The most recent report, EPR-3, was published in 2007. NHLBI assessed the need for an update by requesting information from the public, NAEPP Coordinating Committee Members and its affiliates, and members of the 2007 Expert Panel. Collected information was provided to the NHLBI Advisory Council Asthma Expert Working Group, which produced a report to summarize the process and recommendations from their needs assessment.⁵ The Working Group identified six high priority topics that should be updated. For each topic, Key Questions meriting a systematic literature review were formulated. NHLBI engaged the Agency for Healthcare Research and Quality (AHRQ) to perform the systematic reviews through its Evidence-based Practice Centers (EPC). This report summarizes the systematic review of "Intermittent inhaled corticosteroids and of long-acting muscarinic antagonists for asthma" and highlights areas of controversy and identifies needs for future research on these priority areas.

Intermittent Inhaled Corticosteroid (ICS) Dosing

ICS are highly effective for improving asthma control and reducing exacerbation frequency, yet adherence is often reported to be less than 49 percent to 73 percent in young children and pre-adolescents and less than 50 percent in adolescents and adults. ⁶⁻¹⁰ Published data suggest that an increase in ICS adherence to between 60 percent and 80

percent results in reduced emergency department visits for asthma.^{6,7,11,12} As suggested by the World Health Organization, 'increasing the effectiveness of adherence interventions may have a far greater impact on the health of the population than any improvement in specific medical treatments'.¹³ Despite known barriers to the clinical management of asthma, like nonadherence, continued investigation to alternate dosing strategies for ICS or in the development of novel adjunctive therapies as discussed below continues.

Scheduled, daily dosing of ICS is the preferred pharmacologic controller therapy for persistent asthma in patients of all ages.¹ "Controller therapy" will be used in this document to describe medications to be taken daily on a long-term basis to achieve and maintain control of persistent asthma.¹ "Intermittent" ICS dosing will be used in this document to describe the prescribed use of ICS that is not the same on a daily basis. As prescribed, intermittent ICS dosing may specify variations in the dose, frequency, or duration of administration of ICS. The determinant of ICS use with intermittent ICS dosing may be a patient decision (based on need), an index of worsening asthma or some other predefined criteria. Some examples of intermittent ICS dosing include initiating a temporary course of ICS in a patient not regularly taking ICS controller therapy or temporarily increasing the dose of ICS that is otherwise taken as controller therapy, either strategy in response to a measure of worsening asthma. 1,14,15 An extension of the use of intermittent ICS therapy is the combined use of ICS plus long-acting β₂-agonist (LABA) as both a controller and quick relief therapy, particularly when the LABA is considered fast-acting. 16 "Quick relief" therapy will be used in this document to describe inhaled medication to be used as-needed for acute symptom relief.

EPR-3 suggests that intermittent ICS dosing schedules may be useful in some settings though the evidence at that time was insufficient to support the recommendation beyond experts' consensus. Since the EPR-3, it was determined by the NHLBI Needs Assessment Workgroup that a sufficient number of studies have been published on intermittent ICS dosing to warrant a systematic literature review.

Long-Acting Muscarinic Antagonist (LAMA) Added to ICS or to ICS Plus LABA

LAMAs were not included in the EPR-3 although since then, they have been studied as controller therapy for asthma and at least one LAMA has gained Food and Drug Administration (FDA) approval for the long-term maintenance treatment of asthma in patients 6 years of age and older. This represents a new pharmacologic class of long-acting bronchodilators for consideration in the stepwise approach to asthma management and the NHLBI Needs Assessment Workgroup determined this topic to be of importance for a potential EPR-3 update.

Key Questions (KQs)

KQ1a: What is the comparative effectiveness of intermittent ICS compared to no treatment, pharmacologic, or nonpharmacologic therapy in children 0 to 4 years old with recurrent wheezing?

KQ1b: What is the comparative effectiveness of intermittent ICS compared to ICS controller therapy in patients 5 years of age and older with persistent asthma?

KQ1c: What is the comparative effectiveness of ICS with LABA used as both controller and quick relief therapy compared to ICS with or without LABA used as controller therapy in patients 5 years of age and older with persistent asthma?

KQ2a: What is the comparative effectiveness of LAMA as add-on to ICS controller therapy compared to placebo or increased ICS dose in patients 12 years of age and older with uncontrolled, persistent asthma?

KQ2b: What is the comparative effectiveness of LAMA compared to other controller therapy as add-on to ICS in patients 12 years of age and older with uncontrolled, persistent asthma?

KQ2c: What is the comparative effectiveness of LAMA as add-on to ICS plus LABA compared to ICS plus LABA as controller therapy in patients 12 years of age and older with uncontrolled, persistent asthma?

Population, Intervention, Comparator, Outcomes

Populations: We included all patients that meet the KQ specific criteria regardless of gender, race and ethnicity. Age thresholds per KQ were selected to be consistent with the EPR-3 guidelines.

- KQ1a: Patients 0 to 4 years old with recurrent wheezing
- KQ1b-c: Patients 5 years old and older with persistent asthma
- KQ2a-c: Patients 12 years old and older with uncontrolled, persistent asthma

Interventions: This review focuses on pharmacologic interventions at the class level and includes ICS and inhaled LABA and LAMA, regardless of FDA approval (Table 1).

Table 1. Drugs included in this review

Class	Drugs			
ICS	Beclomethasone, ^a budesonide, ^a ciclesonide, ^a flunisolide, ^a fluticasone, ^a mometasone, ^a triamcinolone ^b			
LABA	Arformoterol, formoterol, a olodaterol, salmeterol, vilanterola, c			
LAMA	Aclidinium, glycopyrrolate, tiotropium, ^a umeclidinium			

ICS = inhaled corticosteroid; LABA = long-acting β_2 -agonist; LAMA = long-acting muscarinic antagonist

The interventions for each of the KQs is as follows (Table 2):

- KQ1a-b: Intermittent ICS dosing
- KQ1c: ICS and LABA used as controller and quick relief therapy
- KQ2a-b: ICS and LAMA as controller therapy
- KQ2c: ICS and LABA and LAMA as controller therapy

^a Currently with FDA approval for asthma, either as a single ingredient product or as a component of a multi-ingredient product.

^b Previously FDA approved although discontinued in 2010

^cConsidered an ultra-long-acting β₂-agonist

Table 2. Intervention and comparator per Key Question

	Comparator: No treatment, pharmacologic or nonpharmacologic therapy ^a	Comparator: ICS controller therapy	Comparator: ICS and LABA controller therapy	Comparator: ICS and other controller therapy ^b
Intervention: Intermittent ICS	KQ 1a	KQ 1a, 1b		
Intervention: ICS and LABA used as controller and quick relief therapy		KQ 1c	KQ 1c	
Intervention: ICS and LAMA controller therapy		KQ 2a°	KQ 2b	KQ 2b
Intervention: ICS and LAMA and LABA controller therapy			KQ 2c	

Note: The first column represents interventions and the first row represents comparators of interest in this review. The key questions for each intervention are listed below the relevant comparator(s).

ICS = inhaled corticosteroid; KQ = Key Question; LAMA = long-acting muscarinic antagonist; --- = not applicable

Comparators: We are interested in direct comparisons of therapies as described per KQ. Table 2 demonstrates the intervention and comparator for each KQ in a tabular format. The definition of "controller therapy" is provided in the Glossary.

- KQ1a: No treatment (placebo or control) **OR** pharmacologic therapy which includes controller therapy or as-needed short-acting β₂-agonist (SABA) **OR** nonpharmacologic therapy. Controller therapies include ICS, inhaled LABA, leukotriene modifiers, cromolyn, methylxanthines, immunomodulators, and systemic corticosteroids. Nonpharmacologic treatment is as per EPR-3 (e.g., avoiding environmental triggers).
- KQ1b: ICS controller therapy
- KQ1c: ICS controller therapy **OR** ICS and LABA controller therapy
- KQ2a: ICS controller therapy, with or without placebo, where the ICS dose is the same or increased relative to the intervention arm dose
- KQ2b: ICS and another controller therapy, including LABA, leukotriene modifiers, cromolyn, methylxanthines, immunomodulators and systemic corticosteroids
- KQ2c: ICS and LABA controller therapy

Outcomes: We included outcomes that fell into the categories below, using definitions provided by the study.

- Asthma exacerbations
 - Requiring systemic (oral and/or parenteral) corticosteroids, requiring hospitalization, requiring emergency room (ER) visit, requiring intensive care unit or intubation, or as defined by the study

^aNonpharmacologic treatment is as per EPR-3 (e.g., avoiding environmental triggers)

^bOther controllers include cromolyn, leukotriene modifiers, immunomodulators, methylxanthines, and systemic corticosteroids

^cSame or increased ICS dose in the comparator arm relative to intervention dose

- o Asthma-related hospitalizations, ER visits, urgent care and outpatient visits
- Death
 - o All-cause, asthma-specific
- Asthma control
 - Composite Measures: Asthma Control Test (ACT), Asthma Control Questionnaire (ACQ), various versions
 - o Spirometry: forced expiratory volume in 1 second (FEV1) forced vital capacity (FVC), FEV1/FVC
- Asthma-specific quality of life:
 - o Asthma Quality of Life Questionnaire (AQLQ), Pediatric Asthma Quality of Life Questionnaire (PAQLQ), Pediatric Asthma Caregiver's Asthma Quality of Life Questionnaire (PACQLQ)
- Health care utilization:
 - o Additional asthma-medication use/need
 - Additional resource use related to intervention (e.g. personnel time, equipment)

Timing/Setting: There were no requirements based on time or setting.

Methods

The protocol for this review is registered as PROSPERO 2016:CRD42016047985. We developed an analytic framework a priori to guide the systematic review process (Figure 1). We searched Ovid MEDLINE, Ovid MEDLINE In-Process & Other Nonindexed Citations, EMBASE via www.embase.com, Cochrane Central Register of Controlled Trials and Cochrane Database of Systematic Reviews via OVID using subject headings and natural language terms reflecting asthma and the drugs of interest (Appendix A). We supplemented the bibliographic database searches with backwards citation tracking of relevant publications. We searched cliniclatrials.gov and the World Health Organization International Controlled Trials Registry Platform (ICTRP) for ongoing studies and those completed with reported results. We reviewed scientific information packets. Searches were updated March 23, 2017 while the draft report was under public/peer review.

We screened titles and abstracts using two independent investigators to determine if the citation met inclusion/exclusion criteria (Table 3). Citations that both reviewers agreed met inclusion criteria were reviewed at the full text level for inclusion into the review. Disagreements were resolved through consensus in consultation with a third reviewer. Corresponding authors were contacted for clarification when needed to assess the inclusion criteria. All authors were given a minimum of 2 weeks to acknowledge queries. Abstracts and meeting presentations were matched to their corresponding full text publication and reviewed for supplemental data.

Data were extracted into standardized collection forms, evidence and outcomes tables by one investigator and verified by a second investigator. Data for crossover trials were extracted from treatment period 1 when available, otherwise authors were contacted for period 1 outcomes. Risk of bias was assessed by two independent reviewers using the Cochrane Collaboration's Risk of Bias Tool¹⁸ for randomized controlled trials (RCTs) and Newcastle Ottawa Scale¹⁹ for observational studies. Overall risk of bias for each study was classified as low, moderate or high, according to the collective risk of bias per evaluated domain and the investigator's confidence in the study results given the identified limitations.²⁰ Risk of bias was considered unclear if the majority of domains evaluated were unclear.

We assessed clinical and methodologic heterogeneity to determine appropriateness of metaanalysis. We based data synthesis on pharmacologic class (e.g., long-acting muscarinic antagonists [LAMA], long-acting β_2 -agonists [LABA], inhaled corticosteroids [ICS]). When a trial included more than one intervention arm for the same drug but with different doses (e.g., tiotropium 2.5µg and 5µg) we combined the arms into a single intervention group using recommended formulae.²¹ Synthesis was also based on age categories consistent with the Expert Panel Report-3 of 0 to 4y old, 5 to 11y old and 12y of age and older. When there were 3 or more trials of similar pharmacologic comparisons and outcomes, we pooled data using a Hartung-Knapp^{22,23} method random effects model using the 'meta' package in R version 3.1.3 (The R Project for Statistical Computing). Relative risks (RR) with corresponding 95 percent confidence intervals (CI) were estimated for binary outcomes and mean differences (MD) with corresponding 95 percent CI were estimated for continuous outcomes. Peto's odds ratio (OR) and 95 percent confidence intervals were estimated for binary outcomes with rare events (<5%) in place of a RR.²⁴ We pooled hazard ratios and corresponding 95 percent CI reported by studies for time to first exacerbation and rate ratios for studies reporting number of exacerbations over follow-up. We assessed presence of statistical heterogeneity using the Cochrane p-value (p<0.10 significant) and the degree of heterogeneity using the I^2 statistic with a value >50 percent considered substantial.²⁵ Publication bias was assessed using funnel plot inspection and Egger's

weighted regression test when 10 or more trials were pooled.^{21,26} A priori determined subgroups of interest included asthma severity, asthma control, age, ICS dose, onset of asthma, obesity, atopy, smoking history, race, pulmonary function, LAMA dose/delivery device, the determinant of ICS use with intermittent ICS dosing and concomitant asthma medications. Subgroup analysis was performed when 3 or more trials per subgroup were available for a given outcome. Studies that fit into more than one predefined age category were not included in the main analysis, unless they were the only source of data, but were added to the age category consistent with the reported mean or median age of the study as a sensitivity analysis. If a study fit into more than one age category but reported results separately for the different age subgroups, those subgroups were considered for the main analyses. Included studies that were not amenable to pooling were qualitatively summarized. Interpretation of results was made in the context of established thresholds that indicate clinical significance where available (Table 4). Data from the crossover trial by Peters et al., ²⁷ were provided by the National Heart, Lung and Blood Institute (NHLBI) Biologic Specimen and Data Repository Information Coordinating Center and independently analyzed by the Evidence-based Practice Center to generate outcomes for period 1 since this data was not reported in the primary manuscript. These results do not necessarily reflect the opinions or views of the BASALT-TALC investigators or the NHLBI.

Strength of evidence (SOE) for each outcome within each comparison was evaluated independently by two senior investigators and then discussed to arrive at the final grading using established guidance.²⁸ We graded the SOE for asthma exacerbations, mortality, asthma control composite scores, spirometry, asthma-specific quality of life and health care utilization. Five required domains included study risk of bias, consistency, directness, precision and publication bias. Based on these elements we assessed the SOE for each comparison and outcome as:

- High: We are very confident that the estimate of effect lies close to the true effect for this outcome. The body of evidence has few or no deficiencies. We believe that the findings are stable, i.e., another study would not change the conclusions.
- Moderate: We are moderately confident that the estimate of effect lies close to the true effect for this outcome. The body of evidence has some deficiencies. We believe the findings are likely to be stable, but some doubt remains.
- Low: We have limited confidence that the estimate of effect lies close to the true effect for this outcome. The body of evidence has major or numerous deficiencies (or both). We believe that additional evidence is needed before concluding either that the findings are stable or that the estimate of effect is close to the true effect.
- Insufficient: We have no evidence, we are unable to estimate an effect, or we have no confidence in the estimate of the effect for this outcome. No evidence is available or the body of evidence has unacceptable deficiencies, precluding reaching a conclusion.

We assessed applicability of studies using the population, intervention, comparator, outcomes, timing, setting (PICOTS) framework.²⁹ Characteristics that may influence applicability include but are not limited to age, gender, race, ethnicity, severity and control of asthma and co-interventions.

Table 3. Inclusion and exclusion criteria

Category	Inclusion criteria	Exclusion criteria
Population	KQ1a: Patients 0 to 4y old ^a with recurrent wheezing KQ1b-c: Patients ≥5y old ^a with persistent asthma KQ2a-c: Patients ≥12y old ^a with uncontrolled, persistent asthma	KQ1a: Patients ≥5y old KQ1b-c: Patients ≤4y old; Patients with intermittent asthma KQ2a-c: Patients ≤11y old; Patients with controlled, persistent asthma or with intermittent asthma
Intervention	KQ1a-b: Intermittent dosing of an ICS KQ1c: ICS and LABA used as both controller and quick relief therapy KQ2a-b: ICS and LAMA controller therapy KQ2c: ICS and LABA and LAMA controller therapy	KQ1c: ICS and LABA used as controller therapy but not quick relief therapy All KQs: All other interventions outside of pharmacologic therapies listed in PICOTS; Combinations of interventions other than those listed in the PICOTS
Comparator	KQ1a: No treatment OR pharmacologic therapy OR nonpharmacologic therapy (see PICOTS) KQ1b: ICS controller therapy KQ1c: ICS and LABA controller therapy KQ2a: ICS controller therapy, with or without placebo, where the ICS dose is the same or higher than in the intervention arm KQ2b: ICS and another controller therapy as defined in PICOTS KQ2c: ICS and LABA controller therapy	KQ1c: ICS and LABA used as both controller and quick relief therapy All KQs: All other comparators outside of those specified in PICOTS; Combinations of comparators other than those listed in the PICOTS
Outcomes	All KQ: Asthma exacerbations (systemic corticosteroid, hospitalization, ER visit, ICS or intubation or as defined by the study) or asthmarelated hospitalizations, ER visits, urgent care and outpatient visits; death (all-cause and asthmaspecific); spirometry (FEV1, FVC and FEV1/FVC); asthma symptom control composite measures (ACT, ACQ); asthma-specific quality of life (AQLQ, PAQLQ, PACQLQ); health care utilization (additional asthma medication use, resource use)	Studies that do not include at least one of the outcomes listed in the PICOTS
Timing, Setting	All settings, study durations and follow-up lengths will be included	None
Study design	Randomized-controlled trials, cross-over trials, ^b prospective or retrospective observational cohort studies, case-controlled studies	Case series, case reports, nonsystematic reviews, systematic reviews with or without meta-analysis ^c
Publication language and	No restriction in publication language or date of publication	Publications in a non-English language without an English language abstract ^d

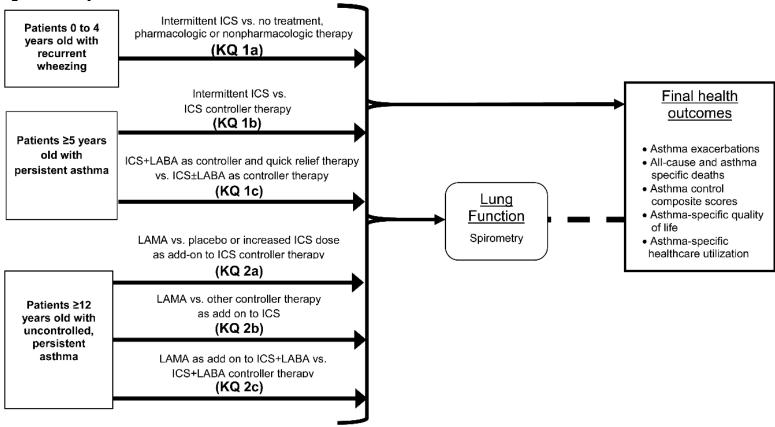
ACT = asthma control test; ACQ = Asthma Control Questionnaire; AQLQ = Asthma Quality of Life Questionnaire; ER = emergency room; FDA = Food and Drug Administration; FEV1 = forced expiratory volume over 1 second; FVC = forced vital capacity; ICS = inhaled corticosteroids; KQ = Key Question; LABA = long-acting β_2 -agonist; LAMA = long-acting muscarinic antagonist; PACQLQ = Pediatric Asthma Caregiver's Quality of Life Questionnaire; PAQLQ = Pediatric Asthma Quality of Life Questionnaire; PICOTS = population, intervention, comparator, outcomes

^aStudies with age inclusion criteria close to the a prior defined age cut-offs for the given KQ were included in the review if the mean age of the population was within the a priori defined age cut-offs.

^bCrossover trials were included if the outcomes data can be abstracted after the first period. If data cannot be abstracted after the first period, the trial will be included based on the following criteria, to minimize carry-over effects: for ICS-if the washout period is at least 6 weeks,³⁰ for LABA or LAMA- if the washout period is at least 4 weeks³¹

Systematic reviews w/meta-analysis were flagged for backwards citation tracking but will not be included in this review. dEnglish language abstracts of non-English language articles were reviewed at the abstract stage and translated when needed to determine eligibility of the full text³²

Table 4. Thresholds for clinical significance


Instrument/outcome	Range (points)	Final score	Threshold
ACT	5 to 25	Well controlled: ≥20 Not well controlled: ≤19	≥12y: ∆ 3 points ^{a,33}
ACQ5, ACQ6	0 to 6	Uncontrolled: ≥1.5 Well-controlled: <0.75	≥18y: ∆ 0.5 points ^{a,34}
ACQ7	0 to 6	Uncontrolled: ≥1.5 Well-controlled: <0.75	≥6y: ∆ 0.5 points ^{a,34,35}
AQLQ, AQLQ(S), AQLQ-mini	1 to 7	Severe impairment = 1 No impairment = 7	≥18y: ∆ 0.5 points ^{a,36-38}
AQLQ12+	1 to 7	Severe impairment = 1 No impairment = 7	≥12y: ∆ 0.5 points ^{a,39,40}
PAQLQ, PACQLQ	1 to 7	Severe impairment = 1 No impairment = 7	7-17y: ∆ 0.5 points ^{a,41,42}
FEV1	Continuous measure, L	NA	≥18y: -0.2 L ^{b,43}
Rescue medication use	Continuous measure, puffs per unit of time	NA	≥18y: -0.81 puffs/day ^{b,43}

ACT = asthma control test; ACQ = Asthma Control Questionnaire; AQLQ: Asthma Quality of Life Questionnaire; FEV1 = forced expiratory volume in 1 second; L = liter; PACQLQ = Pediatric Asthma Caregiver's Quality of Life Questionnaire; PAQLQ = Pediatric Asthma Quality of Life Questionnaire; y = year

^aMinimal important difference.

^bAverage minimal patient perceived improvement

Figure 1. Analytic framework

ICS = inhaled corticosteroid; KQ = Key Question; LABA = long-acting β_2 -agonist; LAMA = long-acting muscarinic antagonist; vs = versus

Results

Search Results

Our search for Key Question (KQ) 1a-c identified 10,763 nonduplicate records, of which 913 required full text review after title and abstract screening, and 74 met eligibility criteria for inclusion in this review (Figure 2). These 74 citations reported results from 41 unique studies, 39 randomized controlled trials (RCTs) and 2 observational studies. Of these 41 studies, 6 met criteria for KQ1a (reported in 7 citations), 44-50 11 met criteria for KQ1b (reported in 18 citations), 51-68 and 24 met criteria for KQ1c (reported in 49 citations). Citations excluded at the full-text review stage are presented in Appendix B.

Records identified Identification Additional records identified through through database searching Medline (n=5633) manual search Embase (n=4690) (n=6)Central (n=3960) Records after duplicates removed Screening (n=10,763)Records excluded (n=9850) Records screened Not a human study (n=3460) (n=10,763)Excluded study design (n=1449) Not in the target population (n=563) Not an intervention of interest (n=3908) No English-language abstract (n=321) Eligibility Duplicate citation (n=149) Full-text articles reviewed (n=913)Full-text articles excluded (n=839) Not a human study (n=208) Excluded study design (n=57) Not in the target population (n=46) Not an intervention of interest (n=442) Included Included citations (n=74), No outcomes of interest (n=10) representing 41 unique No English language abstract (n=3) studies Abstract without full-text (n=5) Duplicate (n=7) Irretrievable (n=61)

Figure 2. Literature flow diagram for Key Questions 1a, 1b, and 1c

Our search for KQ2a-c identified 854 nonduplicate records, of which 146 required full text review after title and abstract screening, and 58 met eligibility criteria for inclusion in this review (Figure 3). These 58 citations reported results from 15 unique studies, all of which were RCTs. Of these 15 RCTs, 8 met criteria for KQ2a (reported in 29 citations), ^{27,118-145} 8 met criteria for KQ2b (reported in 21 citations), ^{27,118-120,124-126,130-137,144-149} and 4 met criteria for KQ2c (reported in 26 citations). ^{145,150-174} Citations excluded at the full-text review stage are presented in Appendix B.

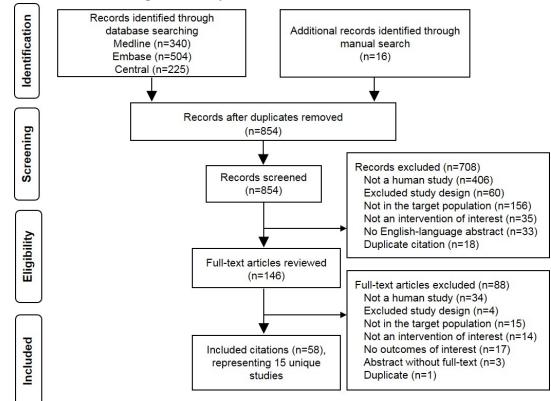


Figure 3. Literature flow diagram for Key Questions 2a, 2b, and 2c

In total, 56 unique studies were included, 54 RCTs and 2 observational studies. The distribution of studies by study design and age category are presented in Table 5.

Table 5. Number of studies included per KQ, study design, and age group

	Characteristic	KQ1a	KQ1b	KQ1c (RCT/NonRCT)	KQ2a	KQ2b	KQ2c
Study	RCTs	6	11	22	8	8	4
Design	Non RCTs	0	0	2	0	0	0
Age	≥12y	NA	9	22 (20/2)	8	8	4
Group	5-11y	NA	0	0	NA	NA	NA
	0-4y	5	0	0	NA	NA	NA
	Mixed	1	2	2 (2/0)	0	0	0
TOTAL		6	11	24	8	8	4

KQ = Key Question; NA = not applicable; RCT = randomized controlled trial; y = years

Organization of This Report

The results are presented in order of KQ and furthermore by intervention/comparator combinations. The same outcomes were sought from all studies regardless of the KQ and are reported when data were available. Supporting tables and figures relevant to the results appear in Tables 6 through 27 and in Appendices C-F, including study and population characteristics, study level outcomes data, study risk of bias assessments and details regarding the strength of evidence grading of each outcome.

KQ1a: What is the comparative effectiveness of intermittent inhaled corticosteroid (ICS) compared to no treatment, pharmacologic, or nonpharmacologic therapy in children 0 to 4 years old with recurrent wheezing?

Results of this KQ are reported separately based on whether the comparator was pharmacologic or nonpharmacologic therapy. There were two distinct pharmacologic comparators: as-needed short-acting β_2 -agonist (SABA) and ICS controller, and data were analyzed separately. We found no studies in which the comparator was nonpharmacologic therapy. While this KQ focuses on the age category of 0 to 4y, one included trial⁴⁵ allowed enrollment of patients up to the age of 6y but because the mean age was 2y we determined the population was considered to represent that of interest.

Key Points

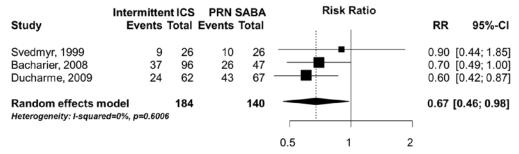
- Intermittent ICS with as-needed SABA versus as-needed SABA, initiated with onset of a respiratory tract infection (RTI), reduces the risk of exacerbation requiring oral corticosteroids (moderate strength of evidence [SOE]) and improves Pediatric Asthma Caregiver's Quality of Life Questionnaire (PACQLQ) scores (low SOE).
- Intermittent ICS with as-needed SABA versus ICS controller with as-needed SABA did not significantly differ in effect on the risk of exacerbation requiring oral corticosteroid, the risk of exacerbation requiring hospitalization or daytime or nighttime rescue medication use (all low SOE).
- There is insufficient evidence to determine the impact of intermittent ICS versus no therapy on outcomes.

Intermittent ICS With As-Needed SABA Versus As-Needed SABA

Table 6. Evidence overview for KQ1a, intermittent ICS with as-needed SABA vs. as-needed SABA

Outcome category	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
Exacerbations	Requiring oral corticosteroid therapy Asthma-related acute care visits	3 RCTs ^{44,45,48} (324) 3 RCTs ^{44,45,48} (324)	Favors intermittent ICS RR 0.67 (0.46 to 0.98) No difference RR 0.90 (0.77 to 1.05)	Moderate (imprecise) High
	Asthma-related hospital admissions	3 RCT ^{44,45,48} (324)	No difference RR 0.77 (0.06 to 9.68)	Low (inconsistent, imprecise)
Quality of life	PACQLQ score	2 RCTs ^{44,48} (270)	Favors intermittent ICS ^a Bacharier, 2008 ⁴⁴ MD -0.10 (-0.36 to 0.34) Ducharme, 2009 ⁴⁸ MD 0.49 (0.10 to 0.86)	Low (inconsistent, imprecise)
Health care utilization	Daytime rescue medication use, number of inhalations/day	1 RCT ⁴⁷ (166)	No difference Papi, 2009 ⁴⁷ MD -0.08 (-0.21 to 0.05)	Low (unknown consistency) ^b
	Nighttime rescue medication use, number of inhalations/night	1 RCT ⁴⁷ (166)	No difference <u>Papi, 2009⁴⁷</u> MD -0.04 (-0.11 to 0.03)	Low (unknown consistency) ^b

CI = confidence interval; ICS = inhaled corticosteroid; MD = mean difference; n = patient sample size; PACQLQ = Pediatric Asthma Caregiver's Quality of Life Questionnaire; PRN = pro re nata (i.e., as-needed); RCT = randomized controlled trial; RR = relative risk; SABA = short-acting β_2 -agonist


Overview of Studies

Four trials (n=493) were included in the analysis of intermittent ICS with as-needed SABA versus as-needed SABA. 44,45,47,48 Three trials 44,45,48 required a history of recurrent wheezing in the context of RTI and randomized patients to ICS treatment every day for a defined length of time (ranging from 7 to 10d or until symptom free for 48 hours) in addition to SABA as-needed versus placebo with SABA as-needed. Svedmyr et al., 48 also required patients to be diagnosed with wheezy bronchitis or asthma and allowed continued use of theophylline or cromoglycate during the trial. Bacharier et al., reported that 61 percent of enrolled patients were modified Asthma Prediction Index (mAPI) positive and 64 percent were diagnosed with asthma by a physician. 44 The fourth trial 47 did not specify a requirement of RTI co-occurrence although did require that patients were referred to a specialist due to recurrent wheezing. In this trial, patients were randomized to beclomethasone/salbutamol as-needed for symptom relief versus salbutamol as-needed for symptom relief. Race was reported as 78 percent Caucasian in one trial⁴⁵ and as 25 percent minority in a second trial⁴⁴. All trials were multicenter and were conducted in single countries including United States (US), Italy, Sweden and Canada. Two trials^{45,47} were industry sponsored, one⁴⁴ was nonindustry sponsored, and one trial⁴⁸ did not report funding. Studies were 12m in duration except one⁴⁷ which was 12 weeks. Risk of bias was low with the exception of Svedmyer et al., 48 which was determined to be unclear.

Results

In patients 0 to 4 years old with recurrent wheezing, intermittent ICS with as-needed SABA, initiated with and continued during RTI, reduces the risk of exacerbation requiring oral corticosteroids by 33 percent compared to as-needed SABA (moderate SOE) (Figure 4). The risk of asthma-related acute care visits or asthma-related hospitalizations was no different between groups. Mean difference (MD) in PACQLQ score improved in the group receiving intermittent ICS versus as-needed SABA (MD = 0.49, low SOE) in one trial but was not different in a second trial. Change in either daytime or nighttime rescue medication inhalations was no different between groups (low SOE).

Figure 4. Risk of requiring a course of oral steroids: intermittent ICS with as-needed SABA versus as-needed SABA

Number of Children Requiring Oral Steroid Course

CI = confidence interval; ICS = inhaled corticosteroids; PRN = as needed; RR = relative risk; SABA = short-acting beta-agonist

^aA positive mean difference in PACQLQ suggest improvement in quality of life

^bStrength of evidence was low even with only one domain downgraded due to the small sample size and lack of confidence in the true effect estimate

Intermittent ICS With As-Needed SABA Versus ICS Controller With As-Needed SABA

Table 7. Evidence overview for KQ1a, intermittent ICS with as-needed SABA versus ICS controller with as-needed SABA

Outcome category	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
Exacerbations	Requiring oral corticosteroid	1 RCT ⁴⁹ (278)	No difference <u>Zeiger, 2011⁴⁹</u> RR 0.99 (0.80 to 1.22)	Low (unknown consistency) ^a
	Requiring hospitalization	1 RCT ⁴⁹ (278)	No difference Zeiger, 2011 ⁴⁹ RR 1.25 (0.34 to 4.56)	Low (unknown consistency, imprecise)
Health care utilization	Daytime rescue medication use, number of inhalations/day	1 RCT ⁴⁷ (220)	No difference Papi, 2009 ⁴⁷ MD 0.07 (-0.4 to 1.8)	Low (unknown consistency, imprecise)
	Nighttime rescue medication use, number of inhalations/night	1 RCT ⁴⁷ (220)	No difference <u>Papi, 2009⁴⁷</u> MD -0.02 (-0.7 to 0.3)	Low (unknown consistency, imprecise)

CI = confidence interval; ICS = inhaled corticosteroid; MD = mean difference; n = patient sample size; RCT = randomized controlled trial; RR = relative risk

Overview of Studies

Two trials (n=498) were included in the analysis of intermittent ICS with as-needed SABA versus ICS controller with as-needed SABA. Papi et al., Was a multicenter trial in Italy of 12 weeks duration, with industry sponsorship and low risk of bias. Patients were required to be referred to a specialist due to recurrent wheezing. They were randomized to the use of beclomethasone/salbutamol on an as-needed basis for symptom relief versus beclomethasone twice daily plus as-needed salbutamol for symptom relief. Race was not reported. Zeiger et al., was a multicenter trial conducted in the US with 52 weeks duration, nonindustry sponsorship, and low risk of bias. Patients were required to have a history of frequent wheezing and to be positive on the mAPI. They were randomized to budesonide for 7d with onset of RTI versus budesonide controller, both groups received albuterol four times daily for the first 48h of RTI then as-needed. Most patients were Caucasian (62 percent).

Results

The risk of exacerbation requiring oral corticosteroid and the risk of exacerbation requiring hospitalization was no different between intermittent ICS and ICS controller in a single trial (low SOE).⁴⁹ Daytime and nighttime rescue medication use was no different between intermittent ICS and ICS controller in a single trial (low SOE).⁴⁹ Mean cumulative salbutamol (mg) was similar between intermittent ICS and ICS controller [30.1 (43.0) versus 34.2 (42.3)].⁴⁷

^aStrength of evidence was low even with only one domain downgraded due to the small sample size and lack of confidence in the true effect estimate

Intermittent ICS Versus No Therapy

Table 8. Evidence overview for KQ1a, intermittent ICS versus no therapy

Outcome category	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
Exacerbations	Requiring systemic corticosteroid	1 RCT ⁴⁶ (26)	Inconclusive <u>Ghirga, 2002⁴⁶</u> RR 0.54 (0.12 to 2.44)	Insufficient (unknown consistency, imprecise)
	Asthma-related ER visit	1 RCT ⁴⁶ (26)	Inconclusive <u>Ghirga, 2002⁴⁶</u> RR 0.27 (0.04 to 2.10)	Insufficient (unknown consistency, imprecise)
	Asthma-related hospitalization	1 RCT ⁴⁶ (26)	Inconclusive Ghirga, 2002 ⁴⁶ No events occurred	Insufficient (no events occurred)

CI = confidence interval; ER = emergency room; ICS = inhaled corticosteroid; n = patient sample size; RCT = randomized controlled trial; RR = relative risk

Overview of Studies

One trial⁴⁶ (n=26) was included in the analysis of intermittent ICS versus no therapy. Patients were 7 to 12m in age, presented with a history of recurrent wheezing during RTI and were randomized to beclomethasone 400µg three times daily for 5d at the first sign of RTI versus no preventative treatment. Ethnicity and sponsorship were not reported and the risk of bias was medium because it was open-label.

Results

Although the outcomes of exacerbation requiring oral steroid and the risk of asthma-related emergency room (ER) visits were reported, the evidence is insufficient to draw a conclusion. No asthma-related hospitalizations occurred.

KQ1b: What is the comparative effectiveness of intermittent ICS compared to ICS controller therapy in patients 5 years of age and older with persistent asthma?

Results of this KQ are reported separately based on the comparators. The first group of studies reported below under the subheading of "Intermittent ICS and ICS controller versus ICS controller" compared the addition of intermittent ICS to ICS controller therapy versus ICS controller therapy. The second group of studies reported below under the subheading "Intermittent ICS versus ICS controller" compared intermittent ICS where the patient was not otherwise on ICS controller versus ICS controller therapy. One study was included in both groups because three arms were reported. Although this KQ focuses on 2 of the 3 EPR-3 age categories (5 to 11y, 12y or older), all but two studies 4,60 were specific to the age category of 12y or older. One trial allowed enrollment of patients as young as 4y old although this study was included in the analysis for 5 to 11y because the mean age was 7y and the populations was determined to represent that of interest. One trial enrolled 6 to 18y olds and represents a mixed population based on age and the mean was 10 to 11y, thus this trial was considered under the age category of 5 to 11y. We report results separately per age group when possible.

Key Points

- In patients 12y of age or older, intermittent ICS and ICS controller versus ICS controller does not significantly differ in effect on the risk of exacerbations (low SOE) with exception of asthma-related outpatient visits (low SOE) which favors intermittent ICS with ICS controller versus ICS controller. Evidence is insufficient to draw conclusions in patients 5 to 11y old.
- In patients 12y of age or older, intermittent ICS versus ICS controller therapy does not significantly differ in the risk of exacerbations (low SOE), Asthma Control Questionnaire (ACQ)-7 or ACQ-5 score (low SOE), spirometry (low to high SOE), Asthma Quality of Life Questionnaire (AQLQ)-(S) score (moderate SOE), albuterol rescue use (moderate SOE). Evidence is insufficient to draw conclusions in patients 5 to 11y old aside from Pediatric Asthma Quality of Life Questionnaire (PAQLQ) score and rescue inhaler use which was no different between groups (low SOE).

Intermittent ICS and ICS Controller Versus ICS Controller

Table 9. Evidence overview for KQ1b, intermittent ICS with ICS controller versus ICS controller in

patients 12 years of age and older

Outcome category	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
Exacerbations	Requiring oral corticosteroid (full population) ^a	3 RCTs ^{59,62,67} (908)	No difference RR 0.68 (0.31 to 1.49)	Low (inconsistent, imprecise)
	Requiring oral corticosteroid (of those starting study inhaler) ^a	3 RCTs ^{55,59,62} (399)	No difference RR 0.64 (0.26 to 1.57)	Low (inconsistent, imprecise)
	Requiring oral corticosteroid, unscheduled doctor visit, ER, or having unstable asthma ^b	1 RCT ⁵⁵ (98)	No difference Fitzgerald, 2004 ⁵⁵ RR 1.03 (0.63 to 1.65)	Low (unknown consistency, imprecise)
	Asthma-related hospitalization	1 RCT ⁶⁷ (115)	Inconclusive <u>Lahdensuo</u> , 1996 ⁶⁷ RR 0.70 (0.12 to 4.05)	Insufficient (medium ROB, unknown consistency, imprecise)
	Asthma-related outpatient visit	2 RCTs ^{59,67} (505)	Favors intermittent ICS and ICS controller Lahdensuo, 1996 ⁶⁷ RR 0.53 (0.29 to 0.96) Harrison, 2004 ⁵⁹ RR 1.14 (0.71 to 1.83)	Low (inconsistent, imprecise)
	Unstable asthmab	1 RCT ⁵⁵ (98)	No difference <u>Fitzgerald, 2004⁵⁵</u> RR 0.57 (0.23 to 1.38)	Low (unknown consistency, imprecise)
	2 or 3 exacerbations requiring oral corticosteroid (full population) ^a	1 RCT ⁶² (403)	No difference <u>Oborne, 2009⁶²</u> RR 0.63 (0.15 to 2.59)	Low (unknown consistency, imprecise)
	2 or 3 exacerbations requiring oral corticosteroid (of those starting study inhaler) ^a	1 RCT ⁶² (403)	No difference <u>Oborne, 2009⁶²</u> RR 0.34 (0.07 to 1.76)	Low (unknown consistency, imprecise)

Outcome category	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
	Fall in PEF <70% from baseline	1 RCT ⁵⁶ (134)	No difference Foresi, 2000 ⁵⁶ RR 1.09 (0.52 to 2.30)	Low (unknown consistency, imprecise)

CI = confidence interval; ICS = inhaled corticosteroid; MD = mean difference; n = patient sample size; OR = odds ratio; RCT = randomized controlled trial; ROB = risk of bias; RR = relative risk; y=year

^aThe full population reflects all patients randomized in that trial, regardless if they ever initiated the study inhaler which would have provided the intermittent ICS dose. The population which started the study inhaler reflects the patients randomized who actually initiated the study inhaler and thus received the intermittent ICs dose they were randomized too.

^bDefined as lack of stability, where stability was defined as morning peak expiratory flow 90 percent or more of mean baseline

value on either of the two previous days, <4 inhalations of inhaled corticosteroid per day over the past 2 days, no nocturnal awakenings in the prior 2 nights, and a total symptom score not exceeding mean baseline value more than 2 ordinal values over the previous 2 days

Table 10. Evidence overview for KQ1b, intermittent ICS with ICS controller versus ICS controller in

patients 4 to 11 years of age

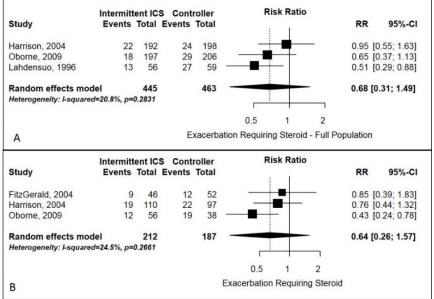
Outcome	Outcome	Quantity and type	Conclusion	Strength of evidence
category		of evidence (n)	Effect estimate (95% CI)	(rationale)
Exacerbation	Requiring oral corticosteroids	1 RCT ⁶⁰ (143)	Inconclusive Martinez, 2011 ⁶⁰	Insufficient (unknown consistency,
	Cortiocotorolad	(110)	RR 1.12 (0.67 to 1.86)	imprecise, indirect) ^a
	Requiring hospitalization	1 RCT ⁵⁴ (29)	Inconclusive <u>Colland, 2004⁵⁴</u> OR 0.14 (0.003 to 7.31)	Insufficient (unclear ROB, unknown consistency, imprecise)
	Treatment failureb	1 RCT ⁶⁰ (143)	Inconclusive Martinez, 2011 ⁶⁰ RR 2.03 (0.39 to 10.72)	Insufficient (unknown consistency, imprecise, indirect) ^a
Spirometry	FEV1 % predicted	1 RCT ⁵⁴ (29)	Inconclusive <u>Colland, 2004⁵⁴</u> MD 5 (-6.01 to 16.01)	Insufficient (unclear ROB, unknown consistency, imprecise)
Quality of life	PAQLQ score	1 RCT ⁶⁰ (143)	No difference <u>Martinez, 2011⁶⁰</u> MD -0.003 (-0.25 to 0.25)	Low (unknown consistency, Indirect) ^a
Health care utilization	Albuterol puffs/day	1 RCT ⁶⁰ (143)	Inconclusive <u>Martinez, 2011⁶⁰</u> MD 0.04 (-0.33 to 0.40)	Insufficient (unknown consistency, imprecise, indirect) ^a

CI = confidence interval; ER = emergency room; FEV1 = forced expiratory volume in one second; ICS = inhaled corticosteroid; MD = mean difference; n = patient sample size; OR = odds ratio; PAQLQ = Pediatric Asthma Quality of Life Questionnaire; RCT = randomized controlled trial; ROB = risk of bias; RR = relative risk; y = year

Overview of Studies

Seven RCTs54-56,59,60,62,67 (n=1312) were included in the analysis of intermittent ICS plus ICS controller versus ICS controller. Five RCTs55,56,59,62,67 enrolled patients 12 years of age and older (mean 31 to 55 years). One trial54 enrolled patients 4 to 11y old and 1 trial60 enrolled a mixed population of 6 to 18y olds (mean 10 to 11y); thus, results of these trials are presented separately from results of patients 12y of age or older. The trial60 that enrolled

^a Martinez et al. enrolled patients 6 to 18 years of age, with mean of 10 and 11y per arm although since this is the only trial that provides data for the EPR-3 age group of 5-11y old, we used the data but downgraded strength of evidence for indirectness ^bDefined as any of following: (1) Hospitalization due to asthma; (2) Hypoxic seizure due to asthma; (3) Intubation due to asthma; (4) Requirement for a second burst of prednisone within any 6m period; (5) Significant adverse event related to the use of a study medication. The only criterion for assignment of treatment failure during the trial was the requirement for a second burst of prednisone within any six-month period


patients 6 to 18 years of age was the only source of data for the population of 4 to 11y old for some of the outcomes evaluated thus we used this data and downgraded the SOE for indirectness. Of the 7 trials, one further specified persistent asthma to be mild,60 one67 specified mild to moderate, and two54,56 specified moderate severity. One trial60 required patients to be well controlled, one 59 described patients as stable, two trials 54,56 considered patients symptomatic, and the others did not specify asthma control. Race was reported in one trial60 and was mostly Caucasian (71%). In all trials, patients were taking ICS controller therapy and in the intervention arm peak expiratory flow (PEF),55,56,59,62,67 prodromal symptoms,54 or real-life scenarios where the patient would normally use albuterol or treat a reduced PEF60 triggered a temporary increase in the ICS dose. Of the trials that used PEF to trigger additional ICS, trigger values ranged from <70 percent to <85 percent. The duration of increased ICS dose was either 7 or 14d except in a single trial 60 instructing patients to use the inhaler whenever albuterol would be normally used. The increase in ICS dose was equivalent to doubling, 54,55,59,67 quadrupling, 56, 62 or patient driven 60. In 5 trials 55, 56, 59, 62, 67 PEF (either < 60% or < 70%) also triggered oral corticosteroid initiation for a duration ranging from 3 to 10d. The control arm was randomized to a set ICS dose in all trials except one67 where physicians modified therapy according to their judgement. All trials were multicenter, of either 6 or 12m duration, and conducted in a single country (Canada, US, United Kingdom [UK], Netherlands, Finland, Italy). Three trials were industry sponsored55,56,67 and 4 were nonindustry sponsored.54,59,60,62 Risk of bias was low in 4 trials,55,59,60,62 medium in 1 trial67 and unclear in 2 trials.54,56

Results

In patients 12y of age or older, intermittent ICS and ICS controller versus ICS controller does not significantly differ in the effect on risk of exacerbation requiring oral corticosteroid, for the full study population (Figure 5, Panel A) or in those patients who actually initiated the study inhaler (Figure 5, Panel B) (low SOE), or other measures of asthma exacerbation (low SOE) with exception of asthma-related outpatient visits which decreased with intermittent ICS and ICS controller versus ICS controller (low SOE). In patients 5 to 11y old, there is insufficient evidence to draw conclusions on the impact of intermittent ICS and ICS controller versus ICS controller. The exception is PAQLQ, where there is a low SOE that there is no difference in effect between groups.

Figure 5. Risk of exacerbations requiring oral corticosteroid: Intermittent ICS and ICS controller versus ICS controller

| Intermittent ICS Controller | Risk Ratio | RR | 95%-CI |
| Harrison, 2004 | 22 | 192 | 24 | 198 | 0.95 [0.55; 1.63]

Panel A represents the comparison of intermittent ICS and ICS controller vs. ICS controller on the outcome of exacerbations requiring steroid in the full population, which is all patients regardless if they initiated their intermittent ICS therapy. Panel B represents the same comparison and outcome but only in patients who actually initiated their intermittent ICS therapy.

Subgroup Data

<u>ICS dose</u>: Harrison et al., analyzed a subgroup of patients on ICS doses up to $1000\mu g$ of beclomethasone equivalents (considered low to moderate ICS dose) and the risk of starting oral corticosteroids was similar to the main analysis. ⁵⁹ Fitzgerald et al., compared patients on ICS doses less than or equal to $400\mu g/d$ vs. greater than $400\mu g/d$ and found the subgroup receiving less that or equal to $400\mu g/d$ were less likely to experience treatment failure during the trial. ⁵⁵ In this study, treatment failure was defined as any one of the following: hospitalization due to asthma, hypoxic seizure due to asthma, intubation due to asthma, requirement for a second burst of prednisone within any 6m period, or significant adverse event related to the use of a study medication.

<u>Age</u>: Fitzgerald et al., also compared adolescents versus adults and found no effect on the outcome of treatment failure (as defined above).⁵⁵

Intermittent ICS Versus ICS Controller

Table 11. Evidence overview for KQ1b, intermittent ICS versus ICS controller in patients 12 years of age and older

Outcome category	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
Exacerbations	Requiring oral	1 RCT ⁵¹	No difference	Low
	corticosteroid	(149)	Boushey, 2005 ⁵¹	(unknown consistency,
			RR 0.70 (0.30 to 1.64)	imprecise)
	Requiring	1 RCT ⁵¹	Boushey, 2005 ⁵¹	Insufficient
	hospitalization	(149)	No events occurred	(no events occurred)
	Asthma-related	1 RCT ⁵²	No difference	Low
	urgent care visit	(227)	Calhoun, 2012 ⁵²	(unknown consistency,
			RR 0.25 (0.05 to 1.16)	imprecise)

Outcome category	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
	Mild ^a or severe ^b exacerbation	1 RCT ⁶³ (228)	No difference Papi, 2007 ⁶³ RR 0.87 (0.29 to 2.61)	Low (unknown consistency, imprecise)
	Severe exacerbation ^b	1 RCT ⁶³ (228)	No difference Papi, 2007 ⁶³ OR 0.11 (0.01 to 1.11)	Low (unknown consistency, imprecise)
Asthma control composite scores	ACQ-7 score	1 RCT ⁵¹ (149)	No difference <u>Boushey, 2005⁵¹</u> MD 0.1 (-0.12 to 0.32)	Low (unknown consistency) ^c
	ACQ-5 score	1 RCT ⁵² (227)	No difference <u>Calhoun, 2012⁵²</u> MD -0.01 (-0.17 to 0.15) ^d	Low (unknown consistency) ^c
Spirometry	FEV1, trough	2 RCTs ^{52,63} (564)	No difference Papi, 2007 ⁶³ MD 0.09 (-0.01 to 0.18) Calhoun, 2012 ⁵² MD 0.01 (-0.13 to 0.15) ^d	High
	FEV1 % predicted	2 RCTs ^{52,63} (564)	No difference Papi, 2007 ⁶³ MD 2.04 (-0.71 to 4.79) Calhoun, 2012 ⁵² MD 0.01 (-1.89 to 1.91) ^d	Moderate (imprecise)
	FVC, trough	1 RCT ⁶³ (228)	No difference <u>Papi, 2007⁶³</u> MD 0.07 (-0.03 to 0.18) ^d	Low (unknown consistency)
	FVC % predicted	1 RCT ⁶³ (228)	No difference Papi, 2007 ⁶³ MD 1.72 (-1.04 to 4.48)	Low (Unknown consistency, imprecise)
Quality of life	AQLQ(S) score	2 RCT ^{51,52} (376)	No difference <u>Boushey, 2005⁵¹</u> MD -0.2 (-0.48 to 0.08) <u>Calhoun, 2012⁵²</u> MD 0.01 (-0.19 to 0.21) ^d	Moderate (inconsistent)
Health care utilization	Rescue albuterol puffs/day	2 RCT ^{52,63} (564)	No difference Papi, 2007 ⁶³ MD 0.07 (-0.13 to 0.26) Calhoun, 2012 ⁵² MD -0.04 (-0.11 to 0.03) ^d	Moderate (imprecise)

ACQ = Asthma Control Questionnaire; AQLQ(S) = Standardized Asthma Quality of Life Questionnaire; CI = confidence interval; FEV1 = forced expiratory volume in one second; FVC = forced vital capacity; ICS = inhaled corticosteroid; MD = mean difference; n = patient sample size; OR = odds ratio; RCT = randomized controlled trial; RR = relative risk; y=year

^aDefined as awakening at night owing to asthma or as a decrease in the morning peak expiratory flow rate to more than 20 percent below the baseline value, the use of more than three additional puffs per day of rescue medication (either albuterol or beclomethasone and albuterol) as compared with during the baseline for 2 or more consecutive days, or both. Single, isolated day on which mild exacerbation occurred were not counted.

^bDefined as a decrease in the morning peak expiratory flow rate to more than 30 percent below the baseline value on 2 consecutive days or more than eight puffs per day of rescue medication for 3 consecutive days or the need for treatment with oral corticosteroids, as judged by the investigator.

^c Strength of evidence was low even with only one domain downgraded due to the small sample size and lack of confidence in the true effect estimate

^dStudy reported 97.5 percent confidence intervals which were converted to 95 percent confidence intervals

Table 12. Evidence overview for KQ1b, intermittent ICS versus ICS controller in patients 4 to 11 years of age

Outcome Outcome Quantity and Conclusion Strength of evidence Effect estimate (95% CI) category type of (rationale) evidence (n) Requiring oral 1 RCT⁶⁰ Exacerbations Inconclusive Insufficient corticosteroids (143)Martinez, 2011⁶⁰ (unknown consistency, RR 1.27 (0.78 to 2.07) imprecise, indirect) 1 RCT⁶⁰ Treatment failuree Inconclusive Insufficient Martinez, 2011⁶⁰ (143)(unknown consistency, RR 3.04 (0.64 to 14.57) imprecise, indirect) 1 RCT⁶⁰ FEV1 % predicted Spirometry Inconclusive Insufficient Martinez, 2011⁶⁰ (143)(unknown consistency, MD -1.30 (-4.24 to 1.64) imprecise, indirect) 1 RCT⁶⁰ Quality of life PAQLQ score No difference Low Martinez, 2011⁶⁰ (143)(unknown consistency, MD 0.04 (-0.25 to 0.33) Indirect) 1 RCT⁶⁰ Health care Rescue albuterol No difference Low utilization puffs/day (143)Martinez, 2011⁶⁰ (unknown consistency, MD 0.003 (-0.24 to 0.25) indirect)

CI = confidence interval; FEV1 = forced expiratory volume in one second; MD = mean difference; n = patient sample size; PAQLQ = Pediatric Asthma Quality of Life Questionnaire; RCT = randomized controlled trial; RR = relative risk; y = year

Overview of Studies

Five RCTs^{51,52,60,63,64} (n=972) were included in the analysis of intermittent ICS versus ICS controller. Three trials^{51,52,63} enrolled patients 12y of age or older (mean 32 to 39y), all requiring an age of at least 18y to enter the trial. One trial enrolled patients 5 to 10y old and one trial⁶⁰ enrolled a mixed population (6 to 18y, mean 10 to 11y); thus, results of these trials are presented separately from results of patients 12y of age or older. Three trials^{51,60,63} specified asthma to be mild persistent, two of which^{60,63} required asthma to be controlled. One trial evaluated patients with mild to moderate persistent asthma that was well or partially well controlled⁵² and the final trial⁶⁴ evaluated mostly mild persistent asthmatics, symptomatic at the start of the trial. Race was specified as Caucasian in 3 trials^{60,63,64} ranging from 64 to 100 percent of subjects. In all trials. patients in the intervention arm were not on controller therapy. In 3 trials, intermittent ICS was triggered by the need for symptom relief where albuterol would normally be used, and ICS doses were taken with SABA doses as-needed. 52,60,63 ICS use was triggered by action plan specified symptoms consistent with the yellow zone in one trial⁵¹ and upon symptom development that prompted contact with study physician who decided if intermittent ICS should be initiated in another trial⁶⁴. In both of these trials^{51,64} intermittent ICS duration was fixed (10 and 14d). In one trial, the control arm received physician-modified therapy according to the step-wise approach⁵² while in the others patients were randomized to a fixed ICS dose. Duration of trials ranged from 6 to 18m. All but 1 trial⁶⁴ were multicenter, 3 trials^{51,52,60} conducted in the US and the others outside of the US. Two trials^{63,64} were industry sponsored while the others were nonindustry sponsored. Risk of bias was low in all trials.

^aDefined as any of following: (1) Hospitalization due to asthma; (2) Hypoxic seizure due to asthma; (3) Intubation due to asthma; (4) Requirement for a second burst of prednisone within any 6m period; (5) Significant adverse event related to the use of a study medication. The only criterion for assignment of treatment failure during the trial was the requirement for a second burst of prednisone within any six-month period.

Results

In patients 12y of age and older, intermittent ICS versus ICS controller therapy does not significantly differ in effect on the risk of exacerbations (low SOE), ACQ-7 or ACQ-5 score (low SOE), spirometry (low to high SOE), AQLQ(S) score (moderate SOE), or albuterol rescue use (moderate SOE).

In patients 5 to 11y old, there is insufficient evidence to draw conclusions on the impact of intermittent ICS versus ICS controller for all endpoints except for rescue albuterol use where there is a low SOE of no difference between the two strategies.

Subgroup Data

Race/ethnicity, albuterol reversibility, baseline FEV1, peak flow, symptoms, nitric oxide, sputum eosinophils: Calhoun et al., found that race/ethnicity and albuterol reversibility predicted the outcome of treatment failure. The odds of treatment failure were increased in Hispanics [Odds Ratio (OR) 3.6 (1.8 to 7.0)] and in blacks [OR 2.1 (1.2 to 4.0)] compared to non-Hispanic white subjects, p<0.02 for both comparisons. ⁵² There was also a significant interaction between race and efficacy suggesting a in non-Hispanic whites, intermittent ICS prevented treatment failure better than ICS controller [HR 4.50 (1.42 to 14.30)] whereas in Hispanics the opposite was found [HR 0.30 (0.04 to 1.80), p=0.01 comparing the two groups). ⁵² In this study, treatment failure was defined as a composite of asthma exacerbations, FEV1 measurement at home or in the office, SABA use, or use of additional asthma medications. ⁵² The following characteristics were not predictive of treatment failure: baseline forced expiratory volume in 1 second (FEV1), peak flow, symptoms, exhaled nitric oxide, sputum eosinophils.

<u>FEV1 percent predicted</u>: Boushey et al., compared subgroups of patients with FEV1 percent predicted 70 to 79 vs. greater than 80 percent and found no impact on the outcome of post-bronchodilatory FEV1.⁵¹

KQ1c: What is the comparative effectiveness of ICS with long-acting beta agonist (LABA) used as both controller and quick relief therapy compared to ICS with or without LABA used as controller therapy in patients 5 years of age and older with persistent asthma?

Results for this KQ are reported separately based on the comparator being ICS controller, ICS and LABA controller, or either comparator (conventional best practice [CBP]). CBP describes the comparator arm in a trial when either ICS or ICS and LABA controller was allowed. The estimated comparative daily ICS dose¹ was used to further categorize studies into the following 6 groups:

- ICS and LABA controller and quick relief versus ICS controller at the same comparative ICS dose (same dose)
- ICS and LABA controller and quick relief versus ICS controller at a higher comparative ICS dose (higher dose)
- ICS and LABA controller and quick relief versus ICS and LABA controller at the same comparative ICS dose (same dose)
- ICS and LABA controller and quick relief versus ICS and LABA controller at a higher comparative ICS dose (higher dose)
- ICS and LABA controller and quick relief versus ICS and LABA controller at a lower comparative ICS dose (lower dose)

• ICS and LABA controller and quick relief versus conventional best practice (CBP) Some studies met criteria for more than one of the above 6 groups when multiple arms were reported. Although this KQ focuses on 2 of the 3 EPR-3 age categories (5 to 11y, 12y of age and older), all but two studies^{83,115} were specific to the age category of 12 years of age and older. One trial¹¹⁵ enrolled patients as young as 6y while the second trial⁸³ enrolled patients as young as 4y. This latter trial⁸³ was included because the mean age was 36y and the populations was considered to represent that of interest. We report results separately per age group when possible.

Key Points—ICS and LABA Controller and Quick Relief Versus ICS Controller

- In patients 12 years of age and older, ICS and LABA controller and quick relief versus ICS controller at the same comparative ICS dose reduces the risk of exacerbations as composite outcomes (all moderate SOE), improves FEV1 (moderate SOE) and reduces rescue medication inhalations per day (low SOE).
- In patients 12 years of age and older and in patients 4 to 11y old, ICS and LABA controller and quick relief versus ICS controller at a higher comparative ICS dose reduces the risk of exacerbations as composite outcomes (all low SOE).

Key Points—ICS and LABA Controller and Quick Relief Versus ICS and LABA Controller

- In patients 12 years of age and older, ICS and LABA controller and quick relief versus ICS and LABA controller at the same comparative ICS dose reduces the risk of composite exacerbations including systemic corticosteroid, hospitalization, or ER visits (high SOE) as well as each of the individual components of the composite outcome (moderate to high SOE). The chance of being an ACQ-5 responder (moderate SOE) and the mean inhalations per week of rescue inhaler (low SOE) also favored controller and quick relief therapy. Results of a subgroup of patients 4-11y old favor ICS and LABA controller and quick relief on composite exacerbation outcomes and on mild exacerbation risk (all low SOE).
- In patients 12 years of age and older, ICS and LABA controller and quick relief versus ICS and LABA controller at a higher comparative ICS dose reduces the risk of composite exacerbations including systemic corticosteroid, hospitalization, or ER visits (high SOE) but not individual components of the composite outcome (moderate SOE).
- There is insufficient evidence to determine the impact of ICS and LABA controller and quick relief versus ICS and LABA controller at a lower comparative ICS dose.

Key Points—ICS and LABA Controller and Quick Relief Versus CBP

• In patients 12 years of age and older, ICS and LABA as controller and quick relief versus CBP reduces the risk of composite exacerbations (requiring systemic corticosteroids, hospitalization, ER visit, moderate SOE) but not of the individual components of the composite outcome (low SOE). ACQ-5 scores were improved with ICS and LABA controller and quick relief (moderate SOE) and rescue medication use also favored ICS and LABA controller and quick relief (moderate SOE).

ICS and LABA as Controller and Quick Relief Versus ICS Controller at the Same Comparative ICS Dose

Table 13. Evidence overview for KQ1c, ICS and LABA controller and quick relief versus ICS

controller (same dose) in patients 12 years of age and older

Outcome category	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
Exacerbations	Requiring systemic corticosteroids, hospitalization, ER visit, or having a PEF<70%	2 RCTs ^{94,96} (2586)	Favors controller and quick relief Scicchitano, 2004 ⁹⁶ RR 0.65 (0.55 to 0.78) Rabe, 2006 ⁹⁴ RR 0.49 (0.32 to 0.76)	Moderate (imprecise)
	Requiring systemic corticosteroids, hospitalization, or ER visit	1 RCT ⁹⁶ (1890)	Favors controller and quick relief Scicchitano, 2004 ⁹⁶ RR 0.64 (0.53 to 0.78)	Moderate (unknown consistency)
Death	All-cause	1 RCT ⁹⁶ (1890)	Inconclusive <u>Scicchitano, 2004⁹⁶</u> OR 0.51 (0.05 to 4.92)	Insufficient (unknown consistency, imprecise)
	Asthma-specific	1 RCT ⁹⁶ (1890)	Scicchitano, 2004 ⁹⁶ No events occurred	Insufficient ^a (no events occurred)
Spirometry	FEV1	1 RCT ⁹⁶ (1890)	Favors controller and quick relief Scicchitano, 2004 ⁹⁶ MD 0.1 (0.07 to 0.13)	Moderate (unknown consistency)
Health care utilization	Rescue mediation use, number of inhalations/day	1 RCT ⁹⁴ (697)	Favors controller and quick relief Rabe, 2006 ⁹⁴ MD -0.34 (-0.51 to -0.17)	Low (unknown consistency, imprecise)

CI = confidence interval; ER = emergency room; FEV1 = forced expiratory volume in one second; MD = mean difference; n = patient sample size; OR = odds ratio; PEF = peak expiratory flow; RCT = randomized controlled trial; RR = relative risk

Overview of Studies

Three RCTs^{94,96,99} (n=2658) were included in the analysis of ICS and LABA controller and quick relief versus ICS at the same comparative dose, all fitting in the age group of 12 years of age and older (mean 38 to 43y). Two trials^{94,96} included patients 12 to 80y old and the third trial⁹⁹ included patients 18 to 70 years old. Sovani et al.,⁹⁹ enrolled patients with suboptimally controlled persistent asthma but also required patients to have evidence of poor adherence to medications and thus results are separately described from the other two trials. Poor adherence was defined in that trial as having collected less than 70 percent of the expected number of prescriptions for ICS in the year prior to the study.⁹⁹ The remaining two trials enrolled symptomatic patients, one⁹⁴ with mild to moderate persistent asthma and the other⁹⁶ with moderate to severe persistent asthma. Race was not reported. All trials compared budesonide/formoterol controller and quick relief to budesonide controller and short-acting β_2 -agonist (SABA) quick relief. Two trials^{94,96} were multicenter, multinational while the third⁹⁹ was multicenter in the UK. All trials were industry sponsored and were either 6 or 12mo in duration. Risk of bias was low in two trials^{94,96} but high in one trial⁹⁹ due to the open-label design, high attrition, and lack of intention-to-treat analysis.

^aStrength of evidence was rated insufficient in the setting of downgrading only one domain because this is a single trial with rare events.

Results

In patients 12 years of age and older, a single trial found the risk of exacerbation requiring systemic corticosteroid, hospitalization or ER visit was reduced by 36 percent with ICS and LABA controller and quick relief versus ICS at the same comparative dose (moderate SOE). Time to first exacerbation [hazard ratio (HR) 0.61 (0.49 to 0.75)] and exacerbation rate [incident rate ratio (IRR) 0.55 (0.46 to 0.66)] favored ICS and LABA controller and quick relief.⁹⁶ Addition of PEF<70 percent to that composite outcome also found a reduction in exacerbation risk favoring ICS and LABA controller and quick relief (moderate SOE). Time to first exacerbation including the PEF component [HR 0.61 (0.50 to 0.74)] and time to first mild exacerbation [HR 0.68 (0.61 to 0.75)] also favored ICS and LABA controller and quick relief versus ICS at the same comparative ICS dose. 96 One trial 96 reported death as an outcome but few events occurred (1 versus 2 deaths, in ICS and LABA controller and quick relief versus ICS controller), none of which were asthma-specific, thus data were insufficient to draw conclusions. Mean change in FEV1 improved (MD = 0.10 L) with ICS and LABA controller and quick relief in a single trial ⁹⁶ (moderate SOE) as did rescue medication use inhalations/day (MD -0.34, low SOE). 94 Two trials 94,96 reported the total number of oral corticosteroid days which were numerically lower in the ICS and LABA controller and quick relief group (114 versus 498, 1176 versus 3177).

Sovani et al., found no difference in the mean change in ACQ-7 score, FEV1, or AQLQ-mini score. ⁹⁹ The total number of oral corticosteroid courses was 6 per group.

ICS and LABA as Controller and Quick Relief Versus ICS Controller at a Higher Comparative ICS Dose

Table 14. Evidence overview for KQ1c, ICS and LABA controller and quick relief versus ICS

controller (higher dose) in patients 12 years of age and older

Outcome category	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
Exacerbations	Requiring systemic corticosteroid, hospitalization, ER visit, or having a PEF<70%	1 RCT ⁸³ (1851)	Favors controller and quick relief O'Byrne, 2005 ^{a,83} RR 0.57 (0.48 to 0.69)	Low (unknown consistency, indirect)
	Requiring systemic corticosteroid, hospitalization, or ER visit	1 RCT ⁸³ (1847)	Favors controller and quick relief O'Byrne, 2005 ^{a,83} RR 0.58 (0.46 to 0.72)	Low (unknown consistency, indirect)

CI = confidence interval; ER = emergency room;; n = patient sample size; PEF = peak expiratory flow; RCT = randomized controlled trial; RR = relative risk; y = year

^aO'Byrne enrolled patients 4 to 80y old although given this is the only trial that provides data for the EPR-3 age group of 12 years of age and older, we used the data but downgraded strength of evidence for indirectness

Table 15. Evidence overview for KQ1c, ICS and LABA controller and quick relief versus ICS

controller (higher dose) in patients 4 to 11 years of age

Outcome category	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
Exacerbations	Requiring systemic corticosteroid, hospitalization, ER visit, increase in ICS or other medication or having a PEF<70%	1 RCT ⁷⁵ (224)	Favors controller and quick relief Bisgaard, 2006 ⁷⁵ RR 0.55 (0.32 to 0.94)	Low ^a (unknown consistency, indirect, imprecise)
	Requiring systemic corticosteroid, hospitalization, ER visit or increase in ICS or other medication	1 RCT ⁷⁵ (224)	Favors controller and quick relief Bisgaard, 2006 ⁷⁵ RR 0.43 (0.21 to 0.87)	Low ^a (unknown consistency, indirect, imprecise)
	Mild exacerbations ^b	1 RCT ⁷⁵ (224)	No difference Bisgaard, 2006 ⁷⁵ RR 0.86 (0.72 to 1.04)	Low ^a (unknown consistency, indirect)

CI = confidence interval; EPR = Expert Panel Review (Guidelines for the Diagnosis and Management of Asthma); ER = emergency room; ICS = inhaled corticosteroid; n = patient sample size; PEF = peak expiratory flow; RCT = randomized controlled trial; RR = relative risk; y = year

Overview of Studies

One multicenter, multinational trial⁸³ (n=1851) of 12m duration was included. The patients represented a mixed age (4 to 80y, mean 36y, 12% of patients <12y) although given this is the only source of data for patients 12 years of age and older, we utilized the data but downgraded SOE for being indirect. Patients had persistent, symptomatic asthma and race was not reported. Patients were randomized to ICS and LABA (budesonide/formoterol) controller and quick relief versus ICS (budesonide) controller at a higher comparative dose with SABA quick relief. The trial reported industry sponsorship and had low risk of bias.

Results

Using the full trial population data to suggest effect in patients 12 years of age and older, the risk of exacerbation requiring systemic corticosteroid, hospitalization or ER visit was reduced by 42 percent with ICS and LABA controller and quick relief versus ICS at a higher comparative dose (low SOE). 83 Time to first exacerbation [HR 0.55 (0.43 to 0.70)] and exacerbation rate [IRR 0.54 (0.44 to 0.66)] favored ICS and LABA controller and quick relief. Addition of PEF<70 percent to that composite outcome also found a reduction in exacerbation risk favoring ICS and LABA controller and quick relief (low SOE). Time to first exacerbation including the PEF component [HR 0.53 (0.43 to 0.65)] and exacerbation rate [IRR 0.53 (0.44 to 0.64)] and the rate of mild exacerbation [IRR 0.64 (0.57 to 0.73)] also favored ICS and LABA controller and quick relief. In the pre-planned subgroup analysis of patients 4 to 11y old (mean 8y), the same two composite exacerbation outcomes also favored ICS and LABA (both low SOE) controller and quick relief although risk of mild exacerbations was no different.⁷⁵ Time to first composite exacerbation that included the PEF component favored ICS and LABA controller and quick relief [HR 0.49 (0.27 to 0.90)].

^a Strength of evidence was downgraded for indirectness due to the dose used in this study, which is lower than that approved in the package insert as well as what the EPR-3 considers "low dose" for this age group.

^bDefined as 2 consecutive days with one of the following: morning PEF greater than or equal to 20 percent below the average run-in value, as-needed medication use two or more inhalations a day above baseline, or awakenings due to asthma

ICS and LABA as Controller and Quick Relief Versus ICS and LABA Controller at the Same Comparative ICS Dose

Table 16. Evidence overview for KQ1c, ICS and LABA controller and quick relief versus ICS and LABA controller (same dose) in patients 12 years of age and older

Outcome	Outcome	Quantity and	Conclusion	Strength of evidence
category	Cutodino	type of	Effect estimate (95%	(rationale)
outogot y		evidence (n)	CI)	(rationals)
Exacerbations	Requiring systemic	2 RCTs ^{70,84}	Favors controller and	High
LAGOIDATIONS	corticosteroid	(3792)	quick relief	riigii
	Corticosteroid	(0102)	Atienza, 2013 ⁷⁰	
			RR 0.77 (0.62 to 0.95)	
			Papi, 2013 ⁸⁴	
			RR 0.62 (0.49 to 0.79)	
	Poquiring	2 RCTs ^{70,86}	Favors controller and	Low
	Requiring		quick relief	Low
	hospitalization	(2224)	Atienza, 2013 ⁷⁰	(inconsistent,
				imprecise)
			RR 0.33 (0.17 to 0.65)	
			Patel, 2013 ⁸⁶	
	5 55	4 DOT70	RR 1.01 (0.14 to 7.05)	1
	Requiring ER visit	1 RCT ⁷⁰	Favors controller and	Moderate
		(2091)	quick relief	(unknown consistency)
			Atienza, 2013 ⁷⁰	
			RR 0.74 (0.59 to 0.93)	
	Requiring intubation	1 RCT ⁸⁶	Papi, 2013 ⁸⁶	Insufficient
		(1701)	No events occurred	(no events occurred)
	Requiring systemic	5 RCTs	Favors controller and	High
	corticosteroid,	70,84,86,93,103	quick relief	
	hospitalization, or ER	(8483)	RR 0.68 (0.58 to 0.80)	
	visit			
	Requiring	5 RCTs	Favors controller and	High
	hospitalization or ER	70,84,86,93,103	quick relief	
	visit	(8313)	RR 0.69 (0.63 to 0.76)	
	Requiring systemic	1 RCT ¹⁰³	Favors controller and	Moderate
	corticosteroid,	(2143)	quick relief	(unknown consistency)
	hospitalization, ER, or		Vogelmeier, 2005 ¹⁰³	
	unscheduled visit		RR 0.79 (0.65 to 0.95)	
	Mild exacerbation ^a	3 RCTs ^{70,84,93}	No difference	Moderate
		(6037)	RR 0.94 (0.81 to 1.09)	(inconsistent)
Death	All-cause	4 RCTs ^{70,86,93,103}	No difference	Moderate
		(6782)	OR 0.43 (0.04 to 4.49)	(imprecise)
	Asthma-specific	4 RCTs ^{70,86,93,103}	No events occurred	Insufficient
	·	(6782)		(no events occurred)
Asthma control	ACT score	1 RCT ¹⁰²	Inconclusive	Insufficient
composite		(63)	Takeyama, 2014 ¹⁰²	(unclear ROB,
scores			MD 6.3 (5.15 to 7.45)	unknown consistency)
	ACQ-5 score	3 RCT ^{70,78,93}	No difference	Low
		(4353)	MD -0.16 (-0.39 to 0.06)	(inconsistent,
		, ,	, , , , , , , , , , , , , , , , , , , ,	imprecise)
	ACQ-5 responderb	1 RCT ⁷⁰	Favors controller and	Moderate
	3 -	(2091)	quick relief	(unknown consistency)
		(300.)	Atienza, 2013 ⁷⁰	
			RR 1.14 (1.05 to 1.24)	
Spirometry	FEV1	5 RCTs ^{70,84,86,93,}	No difference	Low
-phomous		101	MD 0.04 (0.00 to 0.09)	(inconsistent,
		(6343)	(0.00 to 0.00)	imprecise)
	<u> </u>	(5575)	I	i iniprodisoj

Outcome category	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
	FEV1 % predicted	2 RCTs ^{78,86} (304)	No difference Patel, 2013 ⁸⁶ MD 1.8 (-2.8 to 6.4) Hozawa, 2014 ⁷⁸ MD 1.9 (-4.27 to 8.07)	Moderate (medium ROB)
	FVC	1 RCT ⁸⁴ (1701)	No difference Papi, 2013 ⁸⁴ MD -0.01 (-0.07 to 0.04)	Low (unknown consistency, imprecise)
Health care utilization	Rescue medication use, number of inhalations/day	3 RCT ^{70,84,93} (6006)	No difference MD -0.16 (-0.45 to 0.14)	Low (inconsistent, imprecise)
	Rescue medication use, number of inhalations/week	2 RCTs ^{78,101} (93)	Favors controller and quick relief Hozawa, 2014 ⁷⁸ MD -0.73 (-1.42 to -0.04) Takeyama, 2014 ¹⁰¹ MD -2.2 (-3.92 to -0.48)	Low (medium ROB, imprecise)

ACQ = Asthma Control Questionnaire; ACT = Asthma Control Test; CI = confidence interval; ER = emergency room; FEV1 = forced expiratory volume in one second; FVC = forced vital capacity; MD = mean difference; n = patient sample size; OR = odds ratio; PEF = peak expiratory flow; RCT = randomized controlled trial; ROB = risk of bias; RR = relative risk; y = year

Table 17. Evidence overview for KQ1c, ICS and LABA controller and quick relief versus ICS and LABA controller (same dose) in patients 4 to 11 years of age

Outcome category	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
Exacerbations	Requiring systemic corticosteroids, hospitalization, ER visit, increase in ICS or other medication or having a PEF<70%	1 RCT ⁷⁵ (341)	Favors controller and quick relief Bisgaard, 2006 ⁷⁵ RR 0.38 (0.23 to 0.63)	Low (unknown consistency, indirect) ^a
	Requiring hospitalization, systemic corticosteroids, ER visit, or increase in ICS or other medications	1 RCT ⁷⁵ (341)	Favors controller and quick relief Bisgaard, 2006 ⁷⁵ RR 0.28 (0.14 to 0.53)	Low (unknown consistency, indirect) ^a
	Mild exacerbations ^b	1 RCT ⁷⁵ (341)	Favors controller and quick relief Bisgaard, 2006 ⁷⁵ RR 0.75 (0.64 to 0.88)	Low (unknown consistency, indirect) ^a

CI = confidence interval; ER = emergency room; n = patient sample size; OR = odds ratio; PEF = peak expiratory flow; RCT = randomized controlled trial; RR = relative risk; y = year

 $^{^{\}mathrm{a}}\mathrm{Defined}$ as meeting one of the following: the need for 2 or more as-needed medication inhalations over baseline, nighttime awakening from asthma or PEF decrease by at least 20 percent

^bDefined as a reduction in score by 0.5 or more

^a Strength of evidence was downgraded for indirectness due to the dose used in this study, which is lower than that approved in the package insert as well as what the EPR-3 considers "low dose" for this age group.^b Defined as meeting one of the following: the need for 2 or more as-needed medication inhalations over baseline, nighttime awakening from asthma or PEF decrease by at least 20 percent

Overview of Studies

Nine RCTs^{70,78,83,84,86,93,100,101,103} (n=12,902) were included in the analysis of ICS and LABA controller and quick relief versus ICS and LABA controller at the same comparative ICS dose, all but one fitting the age group of 12 years of age and older (mean 39 to 49v). O'Byrne et al.. 83 enrolled patients 4 to 80y old thus was not pooled with the base analysis but added in a sensitivity analysis given the mean age was 36y. The trial provided data from a pre-planned subgroup analysis of 4 to 11y olds which are presented separately.⁷⁵ Of the trials meeting the age group 12 years of age and older, most required the age of 12y^{93,100,104} or 16y^{70,86,101} for inclusion. Vogelmeier et al., 103 although fitting into this group based on ICS comparative doses at the start of the trial, allowed dose titration in the comparator group; and thus we conducted sensitivity analysis excluding this trial. Of the 9 trials, 1 trial¹⁰¹ further specified persistent asthma severity as moderate to severe. Six trials enrolled patients with symptomatic asthma, ^{70,78,83,93,101,103} 1 trial¹⁰⁰ enrolled patients regardless of symptom presence, 4 trials^{70,78,84,101} specified patients were not controlled, and 1 trial⁸⁶ did specify control or symptom presence. Race was reported in one trial⁷⁰ and was 31.8 percent Caucasian and 62.3 percent Asian. Six trials used budesonide/formoterol in both arms^{70,83,86,93,100,101} and 1 trial⁸⁴ compared beclomethasone/formoterol in both arms. Two trials compared budesonide/formoterol controller and quick relief to fluticasone/salmeterol controller. 78,103 The comparator in Stallberg et al., 100 included both similar and a higher comparative ICS dose thus this trial was excluded from pooled analysis. Seven trials 70,78,83,84,93,100,103 were industry sponsored and 2 trials 86,101 were nonindustry sponsored. Five trials^{70,83,84,93,103} were multicenter, multinational while the others were conducted in a single country (Japan, Sweden, New Zealand). Trials were mostly 12m in duration but ranged from 8 weeks to 1 year. Risk of bias was low in all trials except 478,86,100,103 considered medium risk of bias due to the open-label design and 1 trial¹⁰¹ had an unclear risk of bias.

Results

In patients 12y and older, ICS and LABA controller and quick relief versus ICS and LABA controller at the same comparative ICS dose reduces the risk of exacerbation requiring systemic corticosteroids by 23 percent to 38 percent (high SOE), the risk of exacerbation requiring hospitalization by 67 percent (moderate SOE), the risk of exacerbation requiring ER visit by 26 percent (moderate SOE) and the composite outcome of all three exacerbation types by 32 percent (high SOE) (Figure 6, Panel A). Time to first composite exacerbation was reduced in favor of controller and quick relief [HR 0.65 (0.54 to 0.78)] as was rate of composite exacerbations [IRR 0.54 (0.42 to 0.69)]. One trial reported that no patients required intubation from exacerbation.⁸⁴ Additional composite outcomes for exacerbation also suggest reduction in risk favoring ICS and LABA as controller and quick relief (moderate to high SOE) (Figure 6, Panel B) although no difference was found for the risk of mild exacerbations (Figure 6, Panel C) or in the time to first mild exacerbation [HR 0.88 (0.71 to 1.10)]. Deaths were infrequent and occurred in 3 of the 4 trials reporting this outcome^{70,86,93,103} and no difference was found (moderate SOE). No asthma specific deaths occurred. Sensitivity analysis adding O'Byrne et al., 83 to the composite of exacerbations requiring systemic steroids, hospitalization or ER visits [relative risk (RR) 0.65] (0.55 to 0.77), HR 0.62 (0.52 to 0.74), IRR 0.52 (0.44 to 0.63)] did not impact the magnitude or direction of effect for any results. Sensitivity analysis removing Vogelmeier et al., 103 did not impact magnitude or direction of effect for the composite of exacerbations requiring systemic steroids, hospitalization or ER visits [RR 0.66 (0.55 to 0.78), HR 0.62 (0.51 to 0.76)],

exacerbation requiring hospitalization or ER visit [RR 0.69 (0.60 to 0.79)] or death [OR 0.68 (0.01 to 34.96)].

Mean difference in ACQ-5 score was no different between groups although 1 trial⁸⁶ found the chance of being an ACQ-5 responder to favor ICS and LABA controller and quick relief (moderate SOE). Asthma Control Test (ACT) score was reported by a single trial with unclear risk of bias thus impact of ICS and LABA controller and quick relief is undetermined. Mean change in FEV1, FEV1 percent predicted and FVC were no different between groups although the lower limit of the confidence interval for FEV1 was at zero. Mean inhalations of rescue medication per day was no different between groups but when evaluated as mean inhalations per week, favored ICS and LABA controller and quick relief therapy (low SOE).

Stallberg et al., found no difference in the composite exacerbation outcome of those requiring systemic corticosteroids, hospitalization or ER visit with ICS and LABA controller and quick relief versus ICS and LABA controller and a similar or higher comparative ICS dose, in patients 12y old and older. 100

In patients 4 to 11 years old ICS and LABA controller and quick relief versus ICS and LABA controller reduces the risk of three exacerbation types (all low SOE): the composite of exacerbations requiring systemic corticosteroids, hospitalization, ER visit, increase in ICS or other medication or having a PEF less than 70 percent; the composite of exacerbations requiring hospitalization, systemic corticosteroids, ER, or increase in ICS or other medications; and finally mild exacerbations.⁷⁵

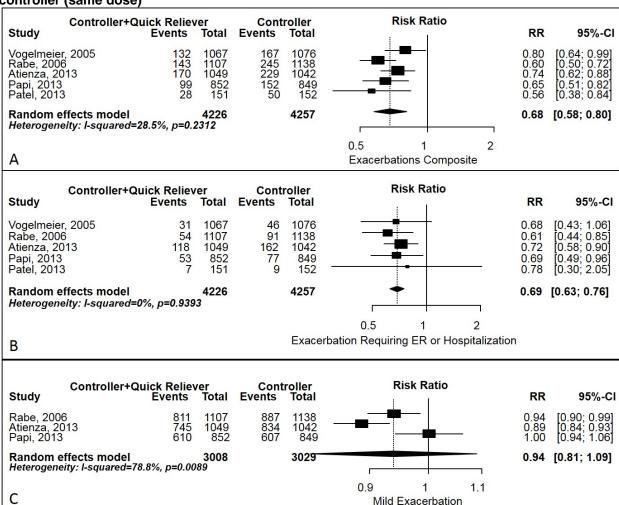


Figure 6. Risk of exacerbation: ICS and LABA controller and quick relief versus ICS and LABA controller (same dose)

CI = confidence interval; ER = emergency room; RR = relative risk

Subgroup Data

Race/ethnicity: Pilcher et al., 90 conducted an analysis of a prior trial 66 for ethnicity-treatment interaction with specific interest in Maori versus non-Maori people. Maori are indigenous Polynesians of New Zealand. Maori had a greater improvement in ACQ-7 score than non-Maori [-1.01 (-1.55 to -0.51) versus -0.10 (-0.31 to 0.11), p<0.001] at the end of the trial. Vogelmeier et al., conducted a post-hoc subgroup analysis 104 of patients 16 years of age and older old in Asian countries (China, Taiwan, Korea and Thailand) from a prior international trial that enrolled patients 12 years of age and older . 103 Being Asian vs. the international population did not affect the composite exacerbation outcome.

Baseline ICS dose: Papi et al., ⁸⁴ found that regardless if maintenance ICS dose on entry was less than or equal to 500µg or greater than 500µg beclomethasone equivalents, the rate of and time to first exacerbation requiring systemic corticosteroid, hospitalization or ER visit favored ICS and LABA controller and quick relief versus ICS and LABA controller, consistent with the main results study results.

Smoking status: Pilcher et al., ¹¹⁶ conducted an analysis of a prior trial ⁸⁶ regarding the effect of smoking status on outcomes. Being a current, former or never smoker did not impact treatment efficacy for the outcomes of exacerbations, hospital or ER attendance, ACQ-7 or FEV1.

<u>FEV1</u> percent predicted, exacerbation history and gender: Patel et al.,⁸⁷ analyzed data from a prior trial⁸⁶ and found the following patient characteristics to increase the risk of exacerbation requiring systemic corticosteroids or hospitalization/ER visit for treatment: lower baseline FEV1 percent predicted per 10 percent [rate ratio 1.14 (1.03 to 1.27)], higher number of exacerbations in the prior year per 1 exacerbation [rate ratio 1.15 (1.01 to 1.13)], treatment with ICS and LABA controller as opposed to controller and quick relief [rate ratio 1.62 (1.07 to 2.47)], and female gender [rate ratio 2.18 (1.29 to 3.67)].

ICS and LABA as Controller and Quick Relief Versus ICS and LABA Controller at a Higher Comparative ICS Dose

Table 18. Evidence overview for KQ1c, ICS and LABA controller and quick relief versus ICS and

LABA controller (higher dose) in patients 12 years of age and older

Outcome categories	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
Exacerbations	Requiring systemic corticosteroid	1 RCT ⁷⁶ (2304)	No difference <u>Bousquet, 2007⁷⁶</u> RR 0.82 (0.62 to 1.07)	Moderate (unknown consistency)
	Requiring systemic corticosteroid, hospitalization, or ER visit	3 RCTs ^{76,81} (6742)	Favors controller and quick relief RR 0.75 (0.59 to 0.96)	High
	Requiring hospitalization or ER visit	3 RCTs ^{76,81} (6742)	No difference RR 0.76 (0.46 to 1.25)	Moderate (imprecise)
	Mild exacerbation ^a	2 RCTs ⁸¹ (3321)	No difference <u>Kuna, 2007a⁸¹</u> RR 0.97 (0.91 to 1.04) <u>Kuna, 2007b⁸¹</u> RR 1.04 (0.97 to 1.11)	Moderate (unknown consistency because single trial)
Death	All-cause	4 RCTs ^{76,81,89} (5757)	No difference OR 2.72 (0.38 to 19.31)	Moderate (imprecise)
	Asthma-specific	4 RCTs ^{76,81,89} (5757)	No events occurred	Insufficient (no events occurred)
Asthma control composite scores	ACQ-5 score	3 RCTs ^{76,81} (6559)	No difference Bousquet, 2007 ⁷⁶ MD -0.02 (-0.07 to 0.04) Kuna, 2007a ⁸¹ MD -0.02 (-0.08 to 0.05) Kuna, 2007b ⁸¹ MD 0.03 (-0.03 to 0.09)	High
Spirometry	FEV1	2 RCTs ⁸¹ (4424)	No difference <u>Kuna, 2007a⁸¹</u> MD 0.01 (-0.03 to 0.04) <u>Kuna, 2007b⁸¹</u> MD 0.01 (-0.03 to 0.04)	Moderate (unknown consistency)
Quality of life	AQLQ(S) score	2 RCTs ⁸¹ (4270)	No difference <u>Kuna, 2007a⁸¹</u> MD 0.01 (-0.07 to 0.08) <u>Kuna, 2007b⁸¹</u> MD -0.02 (-0.09 to 0.06)	Moderate (unknown consistency because single trial)

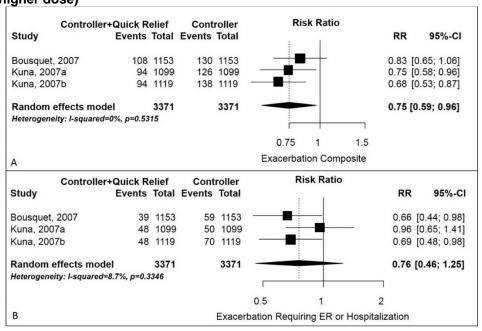
Outcome categories	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
Heath care utilization	Rescue medication use, number of inhalations/day	3 RCTs ^{76,81} (6559)	No difference Bousquet, 2007 ⁷⁶ MD -0.04 (-0.12 to 0.04) Kuna, 2007a ⁸¹ MD -0.03 (-0.12 to 0.06) Kuna, 2007b ⁸¹ MD 0.07 (-0.02 to 0.16)	High

ACQ = Asthma Control Questionnaire; AQLQ = Asthma Quality of Life Questionnaire; CI = confidence interval; ER = emergency room; FEV1 = forced expiratory volume in one second; MD = mean difference; n = patient sample size; OR = odds ratio; RCT = randomized controlled trial; RR = relative risk

Overview of Studies

Five RCTs^{76,81,89,100,115} (n=7605) were included in the analysis of ICS and LABA as controller and quick relief versus ICS and LABA controller at a higher comparative ICS dose. Kuna et al., contributed two unique comparisons which were considered independently for analysis.⁸¹ All trials fit the age group of 12 years of age and older (mean 38 to 45y) except Lundborg et al.,¹¹⁵ which studied a mixed age group (≥6y old). However, this trial¹¹⁵ used formoterol instead of SABA as quick relief in the control arm thus the trial was not pooled with the others. Three trials enrolled patients with symptomatic persistent asthma^{76,81,89} and two trials enrolled patients with persistent asthma and mixed control/presence of symptoms.^{100,115} Race was not reported. All studies compared budesonide/formoterol as controller and quick relief to either fluticasone/salmeterol controller^{76,81} or budesonide/formoterol controller.^{81,89,100,115} The comparator in Stallberg et al.,¹⁰⁰ included both similar and a higher comparative ICS dose thus this trial was excluded from pooled analysis. All trials were multicenter and industry sponsored, 3 trials^{76,81,89} were multinational and 2^{100,115} were conducted in Sweden. Trials ranged from 6 to 12m in duration. Risk of bias was low in 3 trials^{76,81,89} and medium in 2 trials^{100,115} due to the open-label design and the risk of performance and detection bias.

Results


In patients 12 years of age and older, ICS and LABA as controller and quick relief versus ICS and LABA controller at a higher comparative ICS dose did not significantly differ in effect on the risk of exacerbations requiring systemic corticosteroids or requiring hospitalization/ER visit (Figure 7, Panel B) (both moderate SOE) but when evaluated as a composite outcome requiring systemic corticosteroids, hospitalization or ER visit risk was reduced by 25 percent (high SOE) (Figure 7, Panel A). The risk of mild exacerbations was no different (moderate SOE). Deaths occurred in 3 of the 4 trials reporting this outcome^{76,81} and no difference was found (moderate SOE). No asthma-specific deaths occurred. There was no difference in ACQ-5 score (high SOE), FEV1 (moderate SOE), AQLQ(S) score (moderate SOE) or rescue medication use (high SOE).

Lundborg et al., ¹¹⁵ provided data for patients 6y and older and compared two approaches to controller and quick relief therapy, budesonide/formoterol once daily or twice daily, both compared to ICS and LABA controller and formoterol quick relief. ACQ-5 was no different with either controller and quick relief approach compared to ICS and LABA controller. Stallberg et al., found no difference in the composite exacerbation outcome of those requiring systemic corticosteroids, hospitalization or ER visit with ICS and LABA controller and quick relief versus

^aDefined as meeting one of the following: the need for 2 or more as-needed medication inhalations over baseline, nighttime awakening from asthma or a PEF decrease by at least 20 percent

ICS and LABA controller and a similar or higher comparative ICS dose, in patients 12y old and older. 100

Figure 7. Risk of exacerbation: ICS and LABA controller and quick relief versus ICS and LABA controller (higher dose)

CI = confidence interval; ER = emergency room; RR = relative risk

Subgroup Data

<u>Race/ethnicity</u>: Lin et al., ¹¹³ conducted a post-hoc subgroup analyses comparing Chinese patients vs. the full international population and found no impact on the outcomes of exacerbation and ACQ-5 score.

Age: Kuna et al., ⁸⁰ conducted a post-hoc subgroup analysis of a prior trial ⁸¹ in patients 16y of age and older old vs. the original population of 12 years of age and older and found no impact on the outcomes of exacerbations, ACQ-5, AQLQ(S) or rescue medication use inhalations/d.

ICS and LABA as Controller and Quick Relief Versus ICS and LABA Controller at a Lower Comparative ICS Dose

Table 19. Evidence overview for KQ1c, ICS and LABA controller and quick relief_versus ICS and LABA controller (lower dose) in patients 12 years of age and older

Outcome category	Outcome	Outcome Quantity and Conclusion type of Effect estimate (95% evidence (n) CI)		Strength of evidence (rationale)
Asthma control composite scores	ACQ-5 score	1 RCT ¹¹⁷ (30)	Inconclusive <u>Hozawa, 2016¹¹⁷</u> MD -0.40 (-0.53 to -0.27)	Insufficient (medium ROB, unknown consistency, imprecise)
Spirometry	FEV1 % predicted	1 RCT ¹¹⁷ (30)	Inconclusive <u>Hozawa, 2016¹¹⁷</u> MD 3.10 (-1.36 to 7.56)	Insufficient (medium ROB, unknown consistency)

Outcome category	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)		
Health care utilization	Rescue medication use, number of inhalations/week	1 RCT ¹¹⁷ (30)	Inconclusive <u>Hozawa, 2016¹¹⁷</u> MD -0.9 (-1.48 to -0.32)	Insufficient (medium ROB, unknown consistency, imprecise)		

ACQ = Asthma Control Questionnaire; CI = confidence interval; FEV1 = forced expiratory volume in one second; MD = mean difference; n = patient sample size; RCT = randomized controlled trial; ROB = risk of bias; RR = relative risk

Overview of Studies

One RCT¹¹⁷ (n=30) was included in the analysis of ICS and LABA as controller and quick relief versus ICS and LABA controller at a lower comparative ICS dose. Hozawa et al., studied patients 20y of age and older, with a mean age of 41y. Patients were considered to have symptomatic, persistent asthma. Race was not reported. Patient were randomized to budesonide/formoterol as controller and quick relief or fluticasone/vilanterol as controller with procaterol as needed. The trial was single center, industry-sponsored in Japan for 4 weeks. Risk of bias was medium due to the open-label design and the risk of performance and detection bias.

Results

Although the outcomes of ACQ-5 score, FEV1 percent predicted, and rescue medication use were reported, the evidence is insufficient to draw a conclusion.

ICS and LABA as Controller and Quick Relief Versus CBP

Table 20. Evidence overview for KQ1c, ICS and LABA controller and quick relief versus CBP in patients 12 years of age and older

Outcome category			Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
Exacerbations	Requiring systemic corticosteroid	4 RCTs ^{82,91,97,98} (4935)	No difference RR 0.84 (0.61 to 1.17)	Low (medium ROB, imprecise)
	Requiring hospitalization	4 RCTs ^{82,91,97,98} (4935)	No difference OR 0.89 (0.34 to 2.30)	Low (medium ROB, imprecise)
	Requiring ER visit	4 RCTs ^{82,91,97,98} (4935)	No difference RR 0.78 (0.50 to 1.21)	Low (medium ROB, imprecise)
	Requiring systemic corticosteroid, hospitalization, or ER visit	6 RCTs ^{82,91,95,97,98,} ¹⁰⁰ (6354)	Favors controller and quick relief RR 0.78 (0.64 to 0.95)	Moderate (medium ROB)
Death	All-cause	4 RCTs ^{82,91,97,98} (4935)	No difference OR 2.20 (0.32 to 14.96)	Moderate (imprecise)
	Asthma-specific	4 RCTs ^{82,91,97,98} (4935)	No events occurred	Insufficient (no events occurred)
Asthma control composite scores	ACQ-5 score	5 RCTs ^{82,91,95,97,} 98 (4996)	Favors controller and quick relief MD -0.09 (-0.14 to -0.03)	Moderate (medium ROB)

Outcome category	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
	ACQ-5 responder ^a	2 RCTs ^{91,97} (2166)	Favors controller and quick relief Sears, 2008 ⁹⁷ RR 1.22 (1.03 to 1.44) Quirce, 2011 ⁹¹ RR 1.09 (0.92 to 1.30)	Moderate (medium ROB)
Spirometry	FEV1	1 RCT ⁸² (271)	No difference <u>Louis, 2009⁸²</u> MD -0.03 (-0.12 to 0.06)	Low (unknown consistency) ^b
	FEV1 % predicted	1 RCT ⁹⁵ (102)	No difference Riemersma, 2012 ⁹⁵ MD 0.70 (-1.80 to 3.20)	Low (unknown consistency) ^b
Health care utilization	Rescue medication use, number of inhalations/day 2 RCTs ^{82,97} (2404)		Favors controller and quick relief Sears, 2008 ⁹⁷ MD -0.16 (-0.26 to -0.05) Louis, 2009 ⁸² MD -0.10 (-0.24 to 0.03)	Moderate (medium ROB)
	≥1 day w/PRN inhalation	2 RCTs ^{82,91} (1562)	Favors CBP <u>Louis</u> , 2009 ⁸² RR 2.96 (2.42 to 3.61) <u>Quirce</u> , 2011 ⁹¹ RR 0.96 (0.90 to 1.01)	Low (medium ROB, inconsistent)

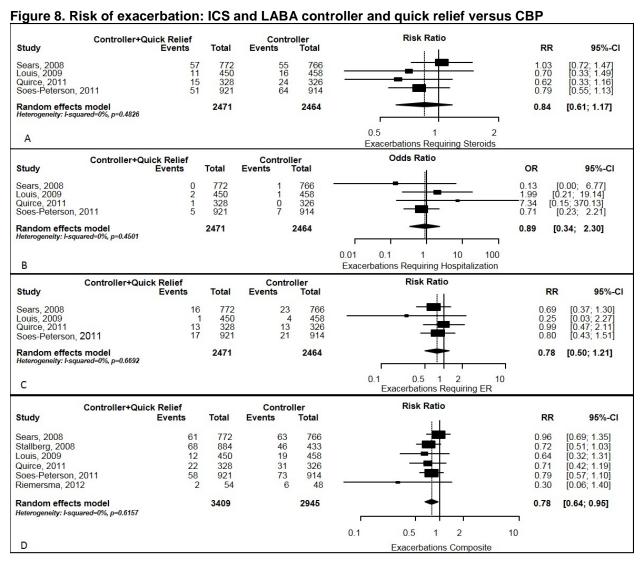
Abbreviations: ACQ=Asthma Control Questionnaire; CBP=conventional best practice; CI=confidence interval; ER=emergency room; FEV1=forced expiratory volume in one second; MD=mean difference; n=patient sample size; OR=odds ratio; PRN=pro re nata (as-needed); RCT=randomized controlled trial; ROB=risk of bias; RR=relative risk

Overview of Studies

Six RCTs^{82,91,95,97,98,100} (n=6832) and two observational studies^{79,114} (n=536) were included in the analysis of ICS and LABA as controller and quick relief versus CBP, all fitting the age category of 12 years of age and older (mean age 40 to 51y). Two trials enrolled patients with mild to severe asthma,^{91,97} 1 enrolled mild to moderate asthma,⁹⁵ and the remaining trials did not further classify persistent asthma severity. Two trials enrolled patients considered to have suboptimal asthma control^{91,97} and the remaining trials enrolled a mixed population in terms of control and/or symptom presence^{82,95,98,100} One trial reported race, which was 94 percent Caucasian.⁹⁷ All trials compared budesonide/formoterol as both controller and quick relief to what we refer to as "CBP". All patients in the CBP groups received at a minimum ICS and of the trials reporting further details^{82,91,97,98} greater than 80 percent were also on LABA. Changes in medications and doses were determined by the physician throughout the course of the trial. All trials were multicenter industry sponsored. Trials ranged from 6 to 12m in duration. Risk of bias was medium in all trials due to the open-label design and the risk of performance and detection bias.

Results

ICS and LABA as controller and quick relief versus CBP did not significantly differ in the effect on the risk of exacerbations requiring systemic corticosteroids, requiring hospitalization, or requiring ER visits (all low SOE) (Figure 8, Panels A-C) but when evaluated as a composite


^aResponder was defined as a reduction in score by 0.5 or more

^bStrength of evidence was rated low even in the setting of one domain downgraded because of the small sample size within a single trial for this outcome and thus lack of confidence in the true effect estimate.

outcome reduces the risk of exacerbations by 22 percent (moderate SOE) (Figure 8, Panel D). Time to first composite exacerbation was not significantly reduced [HR 0.85 (0.58 to 1.23)] while the IRR was in favor of ICS and LABA as controller and quick relief therapy [IRR 0.83 (0.70 to 0.99)]. Deaths were infrequent and occurred in 3 of the 4 trials reporting this outcome 82,97,98 and no difference was detected. No asthma-specific deaths occurred. Spirometry was infrequently reported and in the single trial that measured FEV1 and FEV1 percent predicted, no difference was found (both low SOE). Mean difference in ACQ-5 favored ICS and LABA as controller and quick relief therapy (MD -0.09, moderate SOE) while the chance of being an ACQ-5 responder was increased in 1 trial 97 with ICS and LABA as controller and quick relief by 22 percent (moderate SOE) but a second trial 91 found no difference.

Asthma-specific quality of life was not reported in these trials. The mean difference in rescue medication use favored ICS and LABA controller and quick relief therapy in 1 trial⁹⁷ but was no different in a second trial⁸² (moderate SOE). The chance of needing at least 1 day with as-needed inhaler use favored CBP in 1 trial⁸² but found no difference in a second trial⁹¹. Three trials^{82,91,97} reported the total number of oral corticosteroid days during the trial which was numerically higher with CBP in each trial and one trial provided a p-value indicating statistical significance.

Two observational studies evaluated patients who were treated with ICS and LABA as a controller and quick relief medication versus ICS and LABA as controller with SABA quick relief. ^{79,114} In both studies, the mean age was 50y, race was not reported, and asthma was described as requiring step 3 treatment according to the Global Initiative for Asthma guidelines. Kardos et al., ⁷⁹ was industry sponsored and determined to have low risk of bias while Loh et al., 114 was nonindustry sponsored but with medium risk of bias due to incomparability of the groups compared. Kardos et al., ⁷⁹ found that mean annual exacerbation rate was not significantly different with ICS and LABA controller and quick relief ([0.20 (0.14 to 0.29)] compared to ICS and LABA controller [0.17 (0.10 to 0.29)], p=0.66). Rescue medication use was reduced with ICS and LABA controller and quick relief versus ICS and LABA controller [MD -0.266 (-0.474 to -0.057), p=0.013]. AQLQ(S) change from baseline was greater in the ICS and LABA controller group [mean change 0.42 (0.89)] than in the ICS and LABA controller and quick relief group [mean change 0.25 (0.82)]. FEV1 improved in both groups and the difference was greater in the ICS and LABA controller and quick relief group [mean change 0.13 (0.48) versus 0.07 (0.431)]. Two patients (0.6%) needed ER treatment in the ICS and LABA controller and quick relief group and one (0.6%) needed hospitalization in the ICS and LABA controller group. Loh et al., ¹¹⁴ found that rescue medication use was reduced significantly in both patients treated with ICS and LABA controller and quick relief and those treated with ICS and LABA controller. In the ICS and LABA controller and quick relief group, FEV1 significantly improved (median difference 90 mL, p=0.013) as did the rate of hospitalizations (p=0.039) compared with ICS and LABA controller, although the rate of ER visits did not differ.

CI = confidence interval; ER = emergency room; RR = relative risk

KQ2a: What is the comparative effectiveness of long-acting muscarinic antagonist (LAMA) as add-on to ICS controller therapy compared to placebo or increased ICS dose in patients 12 years of age and older with uncontrolled, persistent asthma?

Key Points—LAMA Versus Placebo as Add-on to ICS

- LAMA versus placebo as add-on to ICS reduces the risk of exacerbations requiring systemic corticosteroids (high SOE) and the risk of asthma worsening (high SOE), and leads to improved mean differences in peak, trough and area under the curve (AUC) for FEV1 and FVC (all high SOE).
- LAMA versus placebo as add-on to ICS does not significantly differ in effect on asthma
 control composite scores (moderate SOE), asthma-specific quality of life (low to high
 SOE) or rescue medication use (moderate SOE).

Key Points—LAMA Add-on to ICS Versus Increasing ICS Dose

• LAMA added on to ICS versus doubling the ICS dose does not significantly differ in effect on the risk of exacerbations requiring systemic corticosteroids or the mean difference in ACQ-6 score, FEV1 trough or AQLQ score (all low SOE).

Table 21. Evidence overview for KQ2a, LAMA as add-on to ICS versus placebo

Outcome	Outcome	Quantity and type	Conclusion	Strength of
category		of evidence	Effect estimate (95% CI)	evidence
	Deguining a systemic	(n) 5 RCTs ^{118-120,122,123}	Favors LAMA	(rationale)
Exacerbations	Requiring systemic corticosteroid	(3036)	RR 0.67 (0.48 to 0.92)	High
	Corticosteroia	()	KK 0.07 (0.46 to 0.92)	
	Asthma worsening ^a	3 RCTs ^{119,122,123}	Favors LAMA	High
		(2420)	RR 0.81 (0.68 to 0.97)	
Death	All-cause	6 RCTs ¹¹⁹⁻¹²³	No deaths occurred	Insufficient
		(3065)		(no events
				occurred)
	Asthma-specific	6 RCTs ¹¹⁹⁻¹²³	No deaths occurred	Insufficient
		(3065)		(no events
				occurred)
Asthma control	ACQ-7 score	4 RCTs ^{119,122,123}	No difference	Moderate
composite		(2304)	MD -0.10 (-0.28 to 0.07)	(inconsistent)
scores	ACQ-7 responder ^b	5 RCTs ¹¹⁹⁻¹²³	No difference	Moderate
		(2680)	RR 1.08 (0.96 to 1.21)	(inconsistent)
Spirometry	FEV1 peak	4 RCTs ^{119,122,123}	Favors LAMA	High
		(2310)	MD 0.18 (0.13 to 0.24)	
	FEV1 trough	7 RCTs ¹¹⁹⁻¹²³	Favors LAMA	High
		(3173)	MD 0.13 (0.10 to 0.17)	
	FEV1 AUC	3 RCTs ^{119,122,123}	Favors LAMA	High
		(2310)	MD 0.18 (0.13 to 0.23)	
	FEV1 % predicted	1 RCT ¹²²	Favors LAMA	Low
		(457)	Paggiaro, 2016 ¹¹²	(unknown
			MD 3.5 (1.58 to 5.42)	consistency)
	FVC peak	3 RCTs ^{119,123}	Favors LAMA	High
		(1853)	MD 0.11 (0.05 to 0.18)	
	FVC trough	5 RCTs ^{118,119,121,123}	Favors LAMA	High
		(2390)	MD 0.08 (0.04 to 0.13)	
	FVC AUC	3 RCTs ^{119,123}	Favors LAMA	High
		1859)	MD 0.11 (0.05 to 0.17)	
Quality of life	AQLQ score	2 RCTs ¹¹⁹	No difference	High
		(1461)	Kerstjens Trial 1, 2015 ¹¹⁹	
			MD 0.07 (-0.06 to 0.20)	
			Kerstjens Trial 2, 2015 ¹¹⁹	
			MD 0.11 (-0.03 to 0.25)	
	AQLQ-mini score	1 RCT ¹¹⁸	No difference	Low
		(253)	Bateman, 2011 ¹¹⁸	(unknown
			MD -0.09 (-0.27 to 0.08)	consistency)c
Health care	Rescue medication use,	7 RCTs ¹¹⁹⁻¹²³	No difference	Moderate
utilization	number of puffs in 24h	(3104)	MD -0.08 (-0.23 to 0.07)	(inconsistent)

ACQ = Asthma Control Questionnaire; AQLQ = Asthma Quality of Life Questionnaire; AUC = area under the curve; CI = confidence interval; FEV1 = forced expiratory volume in one second; ICS = inhaled corticosteroid; LAMA = long-acting muscarinic antagonist; MD = mean difference; n = patient sample size; PEF = peak expiratory flow; RCT = randomized controlled trial; RR = relative risk

^a Defined as progressive increase in asthma symptoms compared to day-to-day symptoms or a decrease in morning PEF greater than or equal to 30 percent for 2 or more days

^bDefined as a decrease in score by 0.5 or more

^cStrength of evidence was rated low even in the setting of one domain downgraded because of the small sample size within a single trial for this outcome and thus lack of confidence in the true effect estimate.

Table 22. Evidence overview for KQ2a, LAMA as add-on to ICS versus doubling the ICS dose

Outcome category	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
Exacerbations	Requiring systemic corticosteroid	1 RCT ²⁷ (210)	No difference <u>Peters, 2010²⁷</u> RR 0.48 (0.12 to 1.84)	Low (unknown consistency, imprecise)
	Requiring oral corticosteroid or increase in ICS or other asthma medication	1 RCT ²⁷ (210)	No difference Peters, 2010 ²⁷ RR 0.32 (0.09 to 1.13)	Low (unknown consistency, imprecise)
Asthma control composite scores	ACQ-6 score	1 RCT ²⁷ (127)	No difference <u>Peters, 2010²⁷</u> MD -0.15 (-0.45 to 0.15)	Low (unknown consistency) ^a
Spirometry	FEV1 trough	1 RCT ²⁷ (118)	No difference <u>Peters, 2010²⁷</u> MD 0.09 (-0.20 to 0.38)	Low (unknown consistency) ^a
Quality of life	AQLQ score	1 RCT ²⁷ (122)	No difference <u>Peters, 2010²⁷</u> MD 0.04 (-0.32 to 0.40)	Low (unknown consistency) ^a

ACQ = Asthma Control Questionnaire; AQLQ = Asthma Quality of Life Questionnaire; AUC = area under the curve; CI = confidence interval; FEV1 = forced expiratory volume in one second; ICS = inhaled corticosteroid; LAMA = long-acting muscarinic antagonist; MD = mean difference; n = patient sample size; PEF = peak expiratory flow; RCT = randomized controlled trial; RR = relative risk

LAMA Versus Placebo as Add-on to ICS

Overview of Studies

Seven RCTs¹¹⁸⁻¹²³ (n=3321) were included in the analysis of LAMA versus placebo as addon to ICS, one had a crossover design.¹²⁰ Two replicate trials were reported in a single publication and each trial results were considered unique except for the results that were only reported in a combined way.¹¹⁹ Six trials were multicenter, multinational trials^{118-120,122,123} and 1 trial was conducted in Japan.¹²¹ All trials reported industry sponsorship. Trials ranged from 15d to 52 weeks in duration. All trials required an age of at least 18 years for inclusion except (mean age 41 to 47y) one trial¹²³ which focused on patients 12 to 17y old (mean age 14y). Patients in the trials reporting race^{118,120} were mostly Caucasian (87% to 93.3%). One trial¹²¹ allowed the continued use of pretrial LABA while a second trial¹²³ did so for pretrial leukotriene receptor antagonist (LTRA). One trial¹²⁰ studied the LAMA umeclidinium while the others studied tiotropium. Risk of bias was low in 6 trials^{118,119,121,-123} and unclear in 1 trial.¹²⁰

Results

As add-on to ICS, LAMA decreases the risk of exacerbation requiring systemic corticosteroid by 33 percent (high SOE) (Figure 9, Panel A) and decreases the risk of asthma worsening by 19 percent (high SOE) (Figure 9, Panel B versus placebo. No deaths occurred in the six trials reporting this outcome.

^a Strength of evidence was rated low even in the setting of one domain downgraded because of the small sample size within a single trial for this outcome and thus lack of confidence in the true effect estimate.

Most measures of lung function obtained from spirometry were improved with LAMA versus placebo, including peak FEV1 (MD 0.18L), trough FEV1 (MD 0.13L) and FEV1 AUC (MD 0.18L), peak FVC (MD 0.11 L), trough FVC (MD 0.08L) and FVC AUC (MD 0.11L) (all with high SOE). FEV1 percent predicted was reported in one trial and was increased with LAMA versus placebo (MD 3.5%, low SOE). Despite these improvements, the mean difference in ACQ-7 score (moderate SOE) was no different with LAMA versus placebo nor was the chance of being a responder (moderate SOE).

Asthma-specific quality of life was no different with LAMA versus placebo, regardless of AQLQ tool version or when evaluated as a mean difference or as a responder (low to high SOE). The only health care utilization outcome reported was the use of rescue medication defined as the mean number of puffs per 24 hours. The mean difference in rescue medication use was no different with LAMA versus placebo (moderate SOE).

Subgroup Data

<u>Tiotropium dose</u>: We conducted preplanned subgroup analysis based on the dose of tiotropium because the a priori base analysis combined tiotropium doses as one intervention arm. Overall, the data do not suggests any substantial differences in the overall conclusions when tiotropium doses were compared separately versus placebo or against each other (Appendix Table 21).

Disease duration, age, smoking status, FEV1 percent predicted, allergic status, BMI: Four 119,122,123 of the 8 included RCTs conducted subgroup analysis within the original trial. Kertjens et al., 119 combined data from the two replicate trials and in a pre-planned subgroup analysis found the following did not influence outcomes of FEV1 peak and trough: disease duration, age, smoking history, FEV1 percent predicted at baseline, allergic status and body mass index (BMI). Hamelmann et al., 123 also found that age did not influence outcomes of FEV1 peak and trough. Paggiaro et al., 122 also found that age did not influence outcomes of FEV1 peak, trough and percent predicted, neither did smoking history.

Figure 9. Risk of exacerbation and of asthma worsening with LAMA versus placebo as add-on to ICS

CI = confidence interval; LAMA = long-acting muscarinic antagonists; RR = relative risk

LAMA as Add-on to ICS Versus Increasing the ICS Dose

Overview of Studies

One cross-over trial²⁷ (n=210) compared the addition of tiotropium 18mcg daily to the run-in dose of ICS versus doubling the dose of ICS for a treatment period of 15 weeks. This study was conducted in the US with nonindustry sponsorship and had a low risk of bias. Patients were required to be at least 18y old for enrollment (mean age 42y). Race was Caucasian in 54.8 percent of patients.

Results

There was no difference in the risk of exacerbations requiring oral or intravenous corticosteroids with tiotropium added to ICS versus doubling the ICS dose (low SOE). This trial²⁷ also reported the number of patients with exacerbations that required oral corticosteroids or increased use of ICS or other asthma medications, which was not different with tiotropium added to ICS versus doubling the ICS dose (low SOE). No other exacerbation outcomes or death were reported. There was no difference with tiotropium added to ICS versus doubling the ICS dose for any other outcome analyzed including mean difference in ACQ-6, FEV1 trough and AQLQ (all low SOE).

KQ2b: What is the comparative effectiveness of LAMA compared to other controller therapy as add-on to ICS in patients 12 years of age and older with uncontrolled, persistent asthma?

Key Points

- LAMA versus LABA as add-on to ICS does not significantly differ in their effect on the risk of exacerbations requiring systemic corticosteroids (low SOE) or risk of asthma worsening (moderate SOE), death (low SOE), asthma control composite scores (low to high SOE), spirometry measures (low to high SOE), asthma-specific quality of life (low to high SOE) or rescue medication use (low SOE).
- Few studies, limited to outcomes of FEV1 percent predicted and rescue medication use, compared LAMA to controllers other than LABA as add-on to ICS.

Table 23. Evidence overview for KQ2b, LAMA versus LABA as add-on to ICS

Table 23. Evidence overview for KQ2b, LAMA versus LABA as add-on to ICS								
Outcome category	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)				
Exacerbations Requiring systemic corticosteroid		4 RCTs ^{27,118-120} (2574)	No difference RR 0.87 (0.53 to 1.42)	Low (inconsistent, imprecise)				
	Asthma worsening ^a	1 RCT ¹¹⁹ (1577)	No difference <u>Kerstjens Trial 1 & 2, 2015¹¹⁹</u> RR 1.00 (0.84 to 1.20)	Moderate (unknown consistency)				
	Requiring oral corticosteroid or increase in ICS or other asthma medication	1 RCT ²⁷ (210)	No difference <u>Peters, 2010²⁷</u> RR 0.60 (0.15 to 2.42)	Low (unknown consistency imprecise)				
Death	All-cause	4 RCTs ^{119,120,148} (3572)	No difference OR 7.50 (0.78 to 72.27)	Low (inconsistent, imprecise)				
	Asthma-specific	4 RCTs ^{119,120,148} (3572)	No difference OR 7.49 (0.47 to 119.86)	Low (inconsistent, imprecise)				
		1 RCT ²⁷ (126)	No difference Peters, 2010 ²⁷ MD 0.30 (0.00 to 0.60)	Low (unknown consistency, imprecise)				
	ACQ-7 score	2 RCTs ¹¹⁹ (1577)	No difference Kerstjens Trial 1, 2015 ¹¹⁹ MD 0.04 (-0.05 to 0.13) Kerstjens Trial 2, 2015 ¹¹⁹ MD 0.00 (-0.09 to 0.09)	High				
	ACQ-7 responder ^b	2 RCTs ¹¹⁹ (1577)	No difference Kerstjens Trial 1, 2015 ¹¹⁹ RR 1.06 (0.96 to 1.18) Kerstjens Trial 2, 2015 ¹¹⁹ RR 1.00 (0.90 to 1.12)	High				
Spirometry	FEV1 peak	2 RCTs ¹¹⁹ (1483)	No difference <u>Kerstjens Trial 1, 2015¹¹⁹</u> MD 0.004 (-0.05 to 0.05) <u>Kerstjens Trial 2, 2015¹¹⁹</u> MD 0.014 (-0.03 to 0.06)	High				
	FEV1 trough	6 RCTs ^{27,118-} 120,148 (3261)	No difference MD 0.02 (-0.03 to 0.06)	High				
	FEV1 AUC	2 RCTs ¹¹⁹ (1483)	No difference <u>Kerstjens Trial 1, 2015¹¹⁹</u> MD -0.004 (-0.05 to 0.04) <u>Kerstjens Trial 2, 2015¹¹⁹</u> MD 0.004 (-0.04 to 0.05)	High				

Outcome category	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
	FEV1 % predicted	3 RCTs ¹⁴⁶⁻¹⁴⁸ (542)	No difference MD -4.54 (-12.69 to 3.61)	Low (medium ROB, inconsistent)
	FVC peak		No difference Kerstjens Trial 1, 2015 ¹¹⁹ MD 0.02 (-0.04 to 0.07) Kerstjens Trial 2, 2015 ¹¹⁹ MD -0.02 (-0.07 to 0.03)	High
	FVC trough	3 RCTs ¹¹⁸⁻¹¹⁹ (1745)	No difference MD 0.02 (0.00 to 0.05)	High
	FVC AUC 2 RC (148		No difference <u>Kerstjens Trial 1, 2015¹¹⁹</u> MD 0.005 (-0.05 to 0.06) <u>Kerstjens Trial 2, 2015¹¹⁹</u> MD -0.03 (-0.09 to 0.03)	High
Quality of life	AQLQ score	4 RCTs ^{27,118,119} (1982)	No difference MD -0.06 (-0.15 to 0.03)	High
	AQLQ-mini score	1 RCT ¹¹⁸ (262)	No difference Bateman, 2011 ¹¹⁸ MD -0.15 (-0.32 to 0.02)	Low (unknown consistency) ^c
Health care utilization	Rescue medication use, number of puffs in 24h	7 RCT ^{118-120,146-} 148 (2450)	No difference MD 0.61 (-0.12 to 1.35)	Low (inconsistent, imprecise)

ACQ = Asthma Control Questionnaire; AQLQ = Asthma Quality of Life Questionnaire; AUC = area under the curve; CI = confidence interval; FEV1 = forced expiratory volume in one second; FVC = forced vital capacity; ICS = inhaled corticosteroid; LABA = long-acting β_2 -agonist; LAMA = long-acting muscarinic antagonist; MD = mean difference; n = patient sample size; RCT = randomized controlled trial; ROB = risk of bias; RR = relative risk

Table 24. Evidence overview for KQ2b. LAMA versus montelukast as add-on to ICS

Outcome category	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
Spirometry	FEV1 % predicted	2 RCTs ^{146,147} (214)	Favors montelukast Rajanandh, 2014 ¹⁴⁶ MD -2.14 (-2.93 to -1.35) Rajanandh, 2015 ¹⁴⁷ MD -0.87 (-2.77 to 1.03)	Moderate (medium ROB)
Health care utilization	Rescue medication use, number of puffs in 24h	2 RCTs ^{146,147} (214)	Favors montelukast Rajanandh, 2014 ¹⁴⁶ MD 0.26 (-0.25 to 0.77) Rajanandh, 2015 ¹⁴⁷ MD 1.19 (0.88 to 1.50)	Low (medium ROB, inconsistent)

CI = confidence interval; FEV1 = forced expiratory volume in one second; MD = mean difference; n = patient sample size; RCT = randomized controlled trial; ROB = risk of bias; RR = relative risk

^a Defined as progressive worsening of asthma symptoms compared to day-to-day symptoms or a decrease in morning PEF greater than or equal to 30 percent for 2 or more days

^bDefined as a decrease in score by 0.5 or more

^cGraded with low strength of evidence in the setting of one domain downgraded due to the small sample size in a single trial and lack of confidence in the true effect estimate.

Table 25. Evidence overview for KQ2b, LAMA versus doxofylline as add-on to ICS

Outcome category	Outcome	Quantity and type Conclusion of evidence (n) Effect estimate (95% CI)		Strength of evidence (rationale)
Spirometry	FEV1 % predicted	2 RCTs ^{146,147} (209)	Favors doxofylline Rajanandh, 2014 ¹⁴⁶ MD -3.87 (-4.6 to -3.14) Rajanandh, 2015 ¹⁴⁷ MD -2.69 (-4.79 to -0.59)	Moderate (medium ROB)
Health care utilization	Rescue medication use, number of puffs in 24h	2 RCTs ^{146,147} (209)	Favors doxofylline Rajanandh, 2014 ¹⁴⁶ MD 0.30 (-0.21 to 0.81) Rajanandh, 2015 ¹⁴⁷ MD 1.21 (0.89 to 1.53)	Low (medium ROB, inconsistent)

CI = confidence interval; FEV1 = forced expiratory volume in one second; MD = mean difference; n = patient sample size; RCT = randomized controlled trial; ROB = risk of bias; RR = relative risk

LAMA Versus LABA as Add-on to ICS

Overview of Studies

Eight RCTs^{27,118-120,146-148} (n=3679) were included in the analysis of LAMA versus LABA as add-on to ICS, two of which were crossover in design.^{27,120} Two replicate trials were reported in a single publication and each trial results were considered unique except for the results that were only reported in a combined way.¹¹⁹ Four trials were multicenter, multinational trials reporting industry sponsorship.¹¹⁸⁻¹²⁰ Two trials were conducted in India^{146,147} and 2 in the US,^{122,148} all of which were nonindustry sponsored. Trails ranged from 15d to 18m in duration. All trials required patients to be at least 18y old for enrollment (mean age 36 to 47). One trial¹⁴⁸ enrolled only African Americans while patients in the remaining trials reporting race^{27,118,120} were mostly Caucasian (54.8% to 93.3%). All trials randomized patients to LAMA versus LABA in addition to background ICS therapy. Seven trials^{27,118,119,146-148} studied tiotropium and one¹²⁰ studied umeclidinium. Four trials^{27,118,119} studied salmeterol, one studied vilanterol,¹²⁰ two studied formoterol,^{146,147} and one studied either salmeterol or formoterol based on pre-study use.¹⁴⁸ Two trials allowed concurrent asthma therapy that were similar across arms.¹¹⁹ Risk of bias was low in 5 trials,^{27,118,119,148} medium in 1 trial (open-label),¹⁴⁶ high in 1 trial (open-label and significant attrition),¹⁴⁷ and unclear in 1 trial.¹²⁰

Results

There was no difference in the risk of exacerbation requiring systemic corticosteroids (Figure 10) or in the risk of asthma worsening when LAMA was compared with LABA as add-on to ICS. One trial reported exacerbations requiring oral corticosteroid or an increase in ICS or other asthma medication use and the risk was no different with LAMA versus LABA.²⁷ Of the four trials that reported death, events occurred in a single trial¹⁴⁸ and the odds of all-cause mortality or of asthma-specific mortality was no different with LAMA versus LABA.

Figure 10. Risk of exacerbation with LAMA versus LABA as add-on to ICS

		_AMA		LABA		R	lisk Rati	0			
Study E	vents	Total	Events	Total						RR	95%-CI
Peters, 2010	3	71	5	71		_	-			0.60	[0.15; 2.42]
Bateman, 2011	16	128	17	134			#			0.99	[0.52; 1.87]
Kerstjens Trial 1&2, 2015	53	1036	34	541						0.81	[0.54; 1.24]
Lee, 2015	3	298	0	295			-	•		6.93	[0.36; 133.57
Random effects model		1533		1041			+			0.87	[0.53; 1.42]
Heterogeneity: I-squared=0	%, p=0	.4895									
	•										
					0.01	0.1	1	10	100		
					Exace	erbatio	ns Requi	ring S	teroids		

CI = confidence interval; LABA = long-acting beta- agonist; LAMA = long-acting muscarinic antagonists; RR = relative risk

The mean difference in ACQ-7 score or the chance of being a responder was no different with LAMA versus LABA. One trial²⁷ reported mean difference in ACQ-6 score which was no different with LAMA versus LABA. All measures of spirometry including mean difference in FEV1 percent predicted or in peak, trough and AUC for both FEV1 and FVC were no different with LAMA versus LABA. Asthma-specific quality of life measured by the mean difference in AQLQ was no different with LAMA versus LABA. One trial evaluated the mean difference in AQLQ-mini which also found no difference with LAMA versus LABA. The only health care utilization outcome reported was rescue medication use, defined as the mean puffs per 24 hours. The mean change in rescue medication use was no different with LAMA versus LABA.

Subgroup Data

<u>Disease duration, age, smoking status, FEV1 percent predicted, allergic status, BMI, bronchodilator reversibility</u>: Three^{119,148} of the 8 included RCTs conducted subgroup analysis within the original trial. Kertjens et al., ¹¹⁹ combined data from the two replicate trials and in a pre-planned subgroup analysis found the following did not influence outcomes of FEV1 peak and trough: disease duration, age, smoking history, FEV1 percent predicted at baseline, allergic status and BMI. Weschler et al., ¹⁴⁸ reported no difference in treatment effects based on BMI or smoking history but those with bronchodilator reversibility at 1 month had a higher likelihood of exacerbation with tiotropium versus LABA compared with those without reversibility at 1 month.

LAMA Versus Other Controllers as Add-on to ICS

Results

Two trials (n=320) of the above 8 trials also compared LAMA versus other controllers, including montelukast 10mg daily and doxofylline 400mg daily. Hean difference in FEV1 percent predicted was reduced in one trial with LAMA versus montelukast [MD -2.14 (-2.93 to -1.35)] but no different in the second trial [MD -0.87 (-2.77 to 1.03)]. Mean difference in FEV1 percent predicted was reduced with LAMA versus doxofylline by -2.69 percent and -3.87 percent in two trials (moderate SOE). Mean difference in rescue medication use was inconsistent in the two trials comparing LAMA versus montelukast [MD 0.26 [-0.25 to 0.77) and [MD 1.19 (0.88 to 1.50)] as well as in the two trials comparing LAMA versus doxofylline [MD 0.30 (-0.21 to 0.81) and MD 1.21 (0.89 to 1.53)].

KQ2c: What is the comparative effectiveness of LAMA as add-on to ICS plus LABA compared to ICS plus LABA as controller therapy in patients 12 years of age and older with uncontrolled, persistent asthma?

Key Points

- LAMA added to ICS plus LABA versus ICS plus LABA does not significantly differ in effect on the risk of asthma exacerbations (low to moderate SOE) but does decrease the risk of asthma worsening (high SOE).
- LAMA added to ICS plus LABA versus ICS plus LABA improved the mean difference in FEV1 AUC and of peak, trough and AUC for FVC (all high SOE), the chance of being an ACQ responder (low to moderate SOE) and the chance of being an AQLQ responder (moderate SOE). There was no difference in asthma control composite scores (low to moderate SOE) or in rescue medication use (moderate SOE).
- In the single trial that compared LAMA added to ICS plus LABA versus increasing the ICS dose and continuing LABA found no significant difference in effect on the mean difference in ACT score.

Table 26. Evidence overview for KQ2c, LAMA added to ICS plus LABA versus ICS plus LABA

Comparison	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
Exacerbations	Requiring systemic corticosteroid	3 RCTs ^{150,152} (1299)	No Difference RR 0.84 (0.57 to 1.22)	Moderate (imprecise)
	Requiring hospitalization	2 RCTs ¹⁵⁰ (907)	No difference <u>Kerstjens Trial 1, 2012¹⁵⁰</u> RR 1.33 (0.54 to 3.32) <u>Kerstjens Trial 2, 2012¹⁵⁰</u> RR 1.16 (0.47 to 2.89)	Moderate (imprecise)
	Asthma worsening ^a	3 RCTs ^{150,152} (1299)	Lower with LAMA RR 0.78 (0.72 to 0.86)	High
Death	All-cause	3 RCTs ^{150,152} (1299)	No deaths occurred	Insufficient (no events occurred)
	Asthma-specific	3 RCTs ^{150,152} (1299)	No deaths occurred	Insufficient (no events occurred)
Asthma control composite scores	ACQ-5 responder ^b	1 RCT ¹⁵⁰ (907)	Favors LAMA <u>Kerstjens Trial 1 & 2, 2012¹⁵⁰</u> OR 1.42 (1.08 to 1.86)	Low (unknown consistency, imprecise)
	ACQ-6 score	1 RCT ¹⁵² (338)	No difference <u>Hamelmann, 2016¹⁵²</u> MD 0.09 (-0.08 to 0.25)	Low (unknown consistency, imprecise)
	ACQ-6 responder ^b	2 RCTs ^{150,152} (1299)	Favors LAMA <u>Hamelmann, 2016¹⁵²</u> RR 1.00 (0.88 to 1.12) <u>Kerstjens Trial 1 & 2, 2012¹⁵⁰</u> OR 1.49 (1.14 to 1.90)	Low (inconsistent, imprecise)
	ACQ-7 score	3 RCTs ^{150,152} (1301)	No Difference MD -0.07 (-0.31 to 0.17)	Moderate (inconsistent)
	ACQ-7 responder ^b	2 RCTs ^{150,152} (1299)	Favors LAMA <u>Hamelmann, 2016¹⁵²</u> RR 1.01 (0.89 to 1.14) <u>Kerstjens Trial 1 & 2, 2012¹⁵⁰</u> RR 1.28 (1.13 to 1.46)	Moderate (inconsistent)

Comparison	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
Spirometry	FEV1 peak	3 RCTs ^{150,152} (1295)	No difference MD 0.10 (0.00 to 0.22)	Moderate (inconsistent)
	FEV1 trough	3 RCTs ^{150,152} (1295)	No difference MD 0.07 (0.00 to 0.14)	Moderate (inconsistent)
	FEV1 AUC	3 RCTs ^{150,152} (1295)	Favors LAMA MD 0.10 (0.01 to 0.19)	High
	FVC peak	3 RCTs ^{150,152} (1295)	Favors LAMA MD 0.11 (0.05 to 0.17)	High
	FVC trough	3 RCTs ^{150,152} (1295)	Favors LAMA MD 0.09 (0.03 to 0.15)	High
	FVC AUC	3 RCTs ^{150,152} (1295)	Favors LAMA MD 0.10 (0.04 to 0.17)	High
Quality of life	AQLQ score	2 RCTs ¹⁵⁰ (907)	No difference Kerstjens Trial 1, 2012 ¹⁵⁰ MD 0.04 (-0.13 to 0.20) Kerstjens Trial 2, 2012 ¹⁵⁰ MD 0.14 (-0.03 to 0.31)	High
	AQLQ responder ^c	1 RCT ¹⁵⁰ (907)	Favors LAMA <u>Kerstjens Trial 1 & 2, 2012¹⁵⁰</u> RR 1.62 (1.34 to 1.96)	Moderate (imprecise)
Health care utilization	Rescue medication use, number of puffs in 24h	3 RCTs ^{150,152} (1302)	No difference MD -0.10 (-0.37 to 0.18)	Moderate (inconsistent)

ACQ = Asthma Control Questionnaire; AQLQ = Asthma Quality of Life Questionnaire; AUC = area under the curve; CI = confidence interval; h = hours; FEV1 = forced expiratory volume in one second; FVC = forced vital capacity; LAMA = long-acting muscarinic antagonist; MD = mean difference; n = sample size; OR = odds ratio; PEF = peak expiratory flow; RCT = randomized controlled trial; RR = relative risk

Table 27. Evidence overview for KQ2c, LAMA added to ICS plus LABA versus increasing ICS dose plus LABA

Comparison	Outcome	Quantity and type of evidence (n)	Conclusion Effect estimate (95% CI)	Strength of evidence (rationale)
Asthma control	ACT score	1 RCT ¹⁵¹	No difference	Low
composite		(63)	Wang, 2012 ¹⁵¹	(unknown consistency,
scores			MD -0.61 (-4.82 to 3.60)	imprecise)

ACT = Asthma Control Test; CI = confidence interval; h = hours; MD = mean difference; n = sample size; RCT = randomized controlled trial

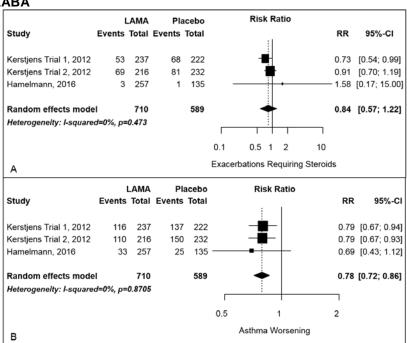
LAMA as Add-on to ICS Plus LABA Versus ICS Plus LABA

Overview of Studies

Three trials^{150,152} (n=1304) were included in the analysis of LAMA as add-on to ICS plus LABA versus ICS plus LABA. All trials were multicenter, multinational trials reporting industry sponsorship and had low risk of bias. Two trials¹⁵⁰ required patients to be at least 18y for enrollment (mean age 51 to 53y) while the third trial¹⁵² focused on patients ages 12 to 17y (mean age 14y). Most patients were Caucasian (82.1% to 94.6%). Two replicate trials randomized patients taking ICS plus LABA to either tiotropium 5µg daily or placebo for 48 weeks.¹⁵⁰ Concurrent asthma therapies were allowed and use was similar in both arms. These two trials

^aDefined as progressive increase in asthma symptoms compared to usual day-to-day symptoms or decrease in morning PEF greater than or equal to 30 percent for 2 or more days

^bDefined as a decrease in score by 0.5 or more


^cDefined as an increase in score of 0.5 or more

were reported in a single publication and each trial was considered unique in the analyses unless the results were only reported in the source documents in a combined fashion. The third trial included patients taking high-dose ICS plus one other controller or medium-dose ICS plus two other controllers and randomized patients to tiotropium 2.5µg daily, 5µg daily or placebo for 12 weeks. LABA was the most common additional controller (83.2%) while use of other controllers was similar in both groups.

Results

There was no difference in the risk of exacerbation requiring systemic corticosteroids (Figure 11, Panel A) or in the risk of exacerbation requiring hospitalization when LAMA added to ICS plus LABA was compared with ICS plus LABA. The risk of asthma worsening was reduced by 22 percent with LAMA added to ICS plus LABA versus ICS plus LABA (high SOE) (Figure 11, Panel B). All three trials reported that no deaths occurred.

Figure 11. Risk of exacerbation and of asthma worsening with LAMA as add-on to ICS and LABA versus ICS and LABA

CI = confidence interval; LAMA = long-acting muscarinic antagonists; RR = relative risk

The MD in ACQ score (whether ACQ-6 or ACQ-7) was no different with LAMA added to ICS plus LABA versus ICS plus LABA. The chance of being an ACQ responder, regardless of the ACQ version, favored LAMA in the combined results of two replicate trials of 48 weeks duration but was no different with LAMA in the single trial of 12 weeks duration. Most measures of lung function obtained from spirometry were improved with LAMA added to ICS plus LABA versus ICS plus LABA including FEV1 AUC (MD 0.10 L), peak FVC (MD 0.11 L), trough FVC (MD 0.09 L) and FVC AUC (MD 0.10 L) (all with high SOE). Data suggest a trend towards improved peak and trough FEV1 with the lower limit of the confidence interval at zero. Mean difference in AQLQ was no different with LAMA added to ICS plus LABA versus ICS plus LABA although the chance of being an AQLQ responder was increased by 62 percent with LAMA added to ICS plus LABA versus ICS plus LABA. The only health care utilization

outcome reported was rescue medication use, defined as the mean puffs per 24 hours. The mean change in rescue medication use was no different with LAMA added to ICS plus LABA versus ICS plus LABA.

Subgroup Data

We identified one post-hoc analysis¹⁷³ by Kerstjens et al., that combined data from two previous replicate trials¹⁵⁰ and found ACQ-7 responder rate at week 24 was influenced by smoking status and screening FEV1 percent predicted, favoring a response with tiotropium 5mcg versus placebo in ex-smokers and in those with lower FEV1 percent predicted at screening. ACQ-7 responder at 48 weeks was influenced by blood eosinophils favoring a response with tiotropium 5mcg versus placebo with lower blood counts. The following characteristics did not influence outcomes: age, race, ethnicity, disease duration, BMI, screening FEV1 percent predicted, FEV1 percent reversibility, clinician-determined allergic status and serum IgE.

LAMA as Add-on to ICS Plus LABA Versus ICS Plus LABA With a Higher ICS Dose

Overview of Studies

One trial (n=63) randomized participants taking salmeterol/fluticasone 50/250mcg twice daily to either add-on tiotropium 18µg daily or to increasing the salmeterol/fluticasone dose to 50/500mcg twice daily. The trial was conducted in China, funding was not reported, and the risk of bias was unclear. The population was referred to as "adults" and the mean age was 35 to 36.

Results

The only outcome reported was mean difference in ACT score which was no different LAMA added to ICS plus LABA versus increasing the ICS dose and continuing LABA.¹⁵¹

Discussion

Overview and Applicability

We conducted a systematic review with meta-analysis to assess the comparative effectiveness of pharmacologic management of asthma, specifically intermittent inhaled corticosteroid (ICS) dosing (with or without long-acting beta agonist (LABA)) and long-acting muscarinic antagonists (LAMA) in comparison to guideline recommended approaches to the treatment of persistent asthma, or recurrent wheezing in the case of patients 4 years (y) old or younger. A total of 54 randomized controlled trials (RCTs) and 2 observational studies comprised the evidence base of this review.

Key Question 1a

In this report, intermittent ICS was defined as the prescribed use of ICS that is not the same on a daily basis. We found several types of intermittent dosing within the evidence base. In patients 0 to 4y old (Key Question [KQ]1a) with recurrent wheezing, intermittent ICS was generally defined as an episode of ICS daily dosing initiated with onset of a respiratory tract infection (RTI) and continued for a defined period, generally 7 to 10 days. Otherwise, the patient was not taking ICS. Data from three trials of 324 patients found this practice, when used with asneeded short-acting β₂-agonist (SABA), reduces the risk of exacerbation requiring oral corticosteroid (moderate strength of evidence [SOE]) in comparison to as-needed SABA. However a difference in exacerbation risk was not detected between intermittent ICS use during RTI compared to ICS controller with as-needed SABA (low SOE), based on a single trial of 278 patients. Thus the strength of evidence was low for the current conclusion. Caregiver quality of life improved (low SOE) versus as-needed SABA although not reaching a minimally important difference and the tool applied has not been validated in this age. Overall, for this KQ the evidence base was limited by the number of trials per comparison and inability to evaluate consistency since several outcomes were based on a single trial, and as such domains of consistency and precision were most impacted for strength of evidence ratings. Evidence was insufficient to draw conclusions for the comparison of intermittent ICS versus no therapy and we found no evidence comparing intermittent ICS to nonpharmacologic therapy.

Key Question 1b

In patients 5y of age or older, intermittent ICS dosing was described in the evidence base in two ways (KQ1b). The first strategy was in patients regularly taking ICS controller therapy who would increase ICS dose temporarily in response to a specific trigger, most often doubling routine ICS dose upon deterioration of peak expiratory flow consistent with the "yellow zone". However, some studies allowed quadrupling of dose and due to limited studies in this analysis overall, we were unable to discern if a given strategy for providing intermittent ICS (i.e., doubling vs. quadrupling) resulted in differing effects. We found patients resembled a mixture of persistent asthma severity and levels of control as described by the studies. Evidence was limited to exacerbations, of which we found no difference in effect between intermittent ICS and ICS controller in patients 12 years of age and older. The largest analysis was for exacerbations leading to oral corticosteroid use which included three trials with 908 patients. However, the other analyses were mostly limited to a single study and thus imprecision and either inconsistency or lack of the ability to evaluate consistency led to low strength of evidence for all

outcomes with this intermittent ICS strategy. The age of patients included in this evidence base reflects middle-aged adults with mean ages in the 30's to 50's. Although data was reported in a single trial for younger patients, evidence was insufficient to draw conclusions in patients 5 to 11y old.

The second strategy of intermittent ICS dosing described by the evidence base was in patients not otherwise on ICS therapy who would temporarily use ICS in comparison to ICS controller therapy. Most studies asked patients to use the ICS study inhaler when they would normally require as-needed SABA, in conjunction with a SABA inhaler. The majority of the population had mild persistent asthma, some of which were required to be at least partially controlled while others were symptomatic at baseline. In the group of studies included in that analysis of 12 years of age and older, the population reflected more of an adult population with the mean age being in the 30's. We did not detect a difference between intermittent ICS and ICS controller in patients 12 years of age and older on exacerbations, asthma control scores, spirometry, quality of life, rescue inhaler use or asthma-related urgent care visits. However, like the other dosing strategy described for KQ1b, the evidence base for this dosing strategy was scarce as well with most outcomes based on a single trial. Thus, strength of evidence was primarily low due to issues of precision and consistency. Evidence is insufficient to draw conclusions in patients 5 to 11y old.

Key Question 1c

Analysis of ICS and long-acting β_2 -agonist (LABA) as both controller and quick relief therapy (KQ1c) in patients with persistent asthma was separated based on the comparator being either ICS or ICS and LABA and also in consideration of the comparative daily ICS dose in the intervention and comparator arms, using thresholds set by the Expert Panel Report-3. All but one trial evaluated a single ICS and LABA combination in the intervention arm (budesonide/formoterol) and the majority of control arms were of the same ICS and LABA combination. In the group of studies considered in the evidence base of 12 years of age and older, the age of patients was again more middle-aged with mean ages ranging from the 30's to 50's. The evidence comparing ICS and LABA controller and quick relief therapy to ICS controller was small relative to other groups in this KQ and primarily based on composite outcomes of asthma exacerbations with little to no evidence for asthma control, spirometry, quality of life, or health care utilization. Patients represented a mix of asthma severity (mild to severe) and were mostly symptomatic at baseline. Based on composite exacerbation outcomes, ICS and LABA controller and quick relief versus ICS controller at the same or higher comparative ICS dose reduced exacerbation risk, both in patients 12 years of age and older and in patients 4 to 11y old. Strength of evidence was low or moderate due to imprecision and unknown consistency in the event of single trial. Data for patients 4 to 11y was also downgraded for indirectness given the dosing used in the study was lower than approved doses and what would be considered "low dose" according to the EPR-3.

ICS and LABA controller and quick relief versus ICS and LABA controller at the same comparative ICS dose had the largest literature base in this report and most evidence was focused on asthma exacerbations and forced expiratory volume in 1 second (FEV1). Most patients were described as either symptomatic or not controlled, and not further described in terms of persistent asthma severity. In patients 12 years of age and older, not only was the risk of the composite exacerbation requiring systemic corticosteroids, hospitalization or emergency room (ER) visit reduced with ICS and LABA controller and quick relief therapy (high SOE), so

were the individual components of the composite outcome (moderate or high SOE). There was no difference in FEV1 (low SOE) and 3 or fewer trials reported data for other outcomes including asthma control composite scores, spirometry (FEV1 % predicted and forced vital capacity [FVC]), and health care utilization. Thus SOE for these outcomes was low to moderate, mostly suggesting no difference in effect between comparison with exception of asthma control questionnaire (ACQ)-5 responder (moderate SOE) and rescue medication use (low SOE) which both favored ICS and LABA controller and quick relief therapy. Evidence in patients 4 to 11y old was limited to a single subgroup analysis of a larger trial and suggested benefit in reducing composite exacerbation outcomes with ICS and LABA controller and quick relief therapy (low SOE). However, these outcomes were downgraded for indirectness given the dosing used in the study was lower than approved doses and what would be considered "low dose" according to the EPR-3.

ICS and LABA controller and quick relief versus ICS and LABA controller at a higher comparative ICS dose reduces the risk of composite exacerbations (high SOE) in patients 12 years of age and older. This population was primarily either symptomatic or a mixture of patients with and without symptoms at baseline, without further specification of persistent asthma severity. No difference was found for death (moderate SOE), ACQ-5 score (high SOE), FEV1 (moderate SOE), Asthma Quality of Life Questionnaire (AQLQ)-(S) score (moderate SOE), or rescue medication use (high SOE). No evidence was found for patients 5 to 11y old. Finally ICS and LABA controller and quick relief therapy, when compared to physician adjusted asthma therapy reflecting standard of care controller options (at a minimum daily ICS), ICS and LABA controller and quick relief therapy reduces risk of composite exacerbation (moderate SOE) but not the risk of the individual components (low SOE). Patients in the ICS and LABA controller and quick relief group had a greater chance of achieving a minimally important difference in ACQ-5 score (moderate SOE) and used fewer rescue medication inhalations (moderate SOE) while no difference was found in FEV1 (low SOE), or FEV1 percent predicted (low SOE). SOE was reduced in this evidence base due to effect estimates that were imprecise and inconsistent, in addition to evidence with risk of bias given the open-label design being subject to performance and detection bias.

Key Question 2

The role of LAMA therapy in asthma management was addressed in KQ2a-c and specific to a population 12 years of age and older with uncontrolled, persistent asthma. Although the age requirement of included studies could have been as young as 12y old, almost all data were derived from trials requiring participants to be at least 18 years old. The mean ages ranged from the 30's to 50's. Most studies defined "uncontrolled" with use of the ACQ, requiring a score of 1.5 or greater for inclusion. Almost the entire evidence base reflects a single LAMA (tiotropium) delivered via a soft mist inhaler as opposed to dry powder inhaler. Many of the trials for KQ2a and KQ2b overlapped as they were three arm trials. We found LAMA to be more effective than placebo as add-on to ICS, supported by the reduction in risk of exacerbation requiring systemic corticosteroids (high SOE) and the peak, trough and area under the curve (AUC) of both FEV1 and FVC (all high SOE). No difference was found for asthma control composite scores, quality of life, or rescue medication use. Add-on LAMA to ICS versus doubling ICS dose did not significantly differ in effect on outcomes of exacerbation, asthma control scores, FEV1 trough, or AQLQ, all with low SOE. LAMA compared to LABA, as add-on to ICS, was no different in any evaluated outcomes including exacerbations, death, asthma control scores, spirometry,

quality of life, or rescue medication use. SOE was high for more outcomes than not, and limitations downgrading SOE to low or moderate were due to precision and consistency. Few studies, limited to outcomes of FEV1 and rescue medication use, evaluated other controllers than LABA as a comparator to add-on LAMA. FEV1 and rescue medication use was improved with either montelukast or doxyfylline versus LAMA although SOE was low due to risk of bias and consistency. LAMA added to ICS and LABA in comparison to ICS and LABA did not result in a significant difference on effect of exacerbation risk although most measures of lung function, particularly FEV1 AUC and peak trough and AUC of FVC, were improved. The chance of a patient achieving a minimally important difference in ACQ-7 and AQLQ scores was also increased with LAMA added to ICS and LABA.

Limitations

This review sought to evaluate different ICS dosing strategies and LAMA therapy in persistent asthmatics of various ages, depending on the KQ. Comparisons were class-based and thus this review does not inform the impact of specific doses on outcomes, rather more globally addresses classes and broad dosing strategies (i.e. intermittent dosing of ICS). Although effectiveness is an important part of decision-making, this report did not include harms associated with drug therapies, which should also be taking in to consideration. The majority of patients included in trials, when race was reported, were Caucasian and thus application of data to other races is limited. KQ1 included young pediatric populations, and evidence overall was sparse in those under 5 years old making it difficult to draw conclusions, if at all. Even within the age category of 12 years of age and older, regardless of KQ, data centered around mean ages of 30 to 50y thus extremes of age are underrepresented in the evidence base. Lastly, review of LAMA in patients under 12 years of age was outside of the scope of this review although clinicians should recognize recent approval of tiotropium in the pediatric population as young as 6 years of age. Inclusion criteria of studies rarely provided enough information to determine persistent asthma severity thus we relied on study reported severity, which in the majority of trials was not present. In addition, control of asthma was infrequently reported. In the ICS evidence base, it was more common to find trials describing presence of symptoms during run-in than a clearer measure of asthma control. In the LAMA evidence base, we only included trials evaluating a population with uncontrolled asthma, which most often was defined using the ACQ score. However, this is only one of many criteria of impairment or risk that can be applied to determine asthma control.

Overall, most studies in this review were of low risk of bias. However, particularly in KQ1c, studies were found to have increased risk of bias do to their open-label design and risk of performance and detection bias.

Although we sought to evaluate any LAMA in KQ2a-c, regardless of Food and Drug Administration approval status, the evidence base is driven almost exclusively by tiotropium, administered as a soft mist inhaler. In addition, the evidence base comparing LAMA to other controllers, as add-on to ICS, was limited in number and size of trials and also to very few outcomes, making it challenging to draw conclusions comparing LAMA to other controllers outside of LABA when added to ICS.

Many studies reported exacerbations requiring systemic corticosteroids; however, other exacerbation types, such as those requiring ER visits or hospitalizations, which are important health outcomes, were far less frequently reported. In addition, the evidence base for some KQ relied on composite outcomes that grouped components that likely vary in importance, making

results difficult to interpret. Outside of exacerbations and spirometry, measures of asthma control composite scores, quality of life and health care utilization other than rescue inhaler use were infrequently reported.

Little data exists regarding subgroups that are of interest in this field, not limited to but including asthma severity and control. Although we sought to collect and analyze such data when possible, we were only able to perform a subgroup analysis for the dose of tiotropium in in LAMA-related KQs. Additional data reported relevant to subgroups of interest came from analyses of original trials included in this review.

Future Research Needs

Additional research would be valuable in the area of intermittent ICS dosing, particularly that which was evaluated in KQ1a and 1b where currently the evidence base is limited in size, not only overall but also per comparator/outcome evaluated. In addition, there seems to be a relatively lower amount of published evidence related to intermittent ICS dosing in comparison to other KQ addressed in this report such as the use of ICS and LABA as quick relief and controller therapy or the role of LAMA therapy in asthma. This may unfortunately lead to misinterpretation of evidence suggesting lack of benefit to intermittent therapy when in fact there is a limited data set currently from which to draw conclusions. Given most outcomes were rated with low strength of evidence, future research could change the direction or magnitude of effect or the strength of evidence the consistency and precision in effect estimates improve. For KQ1b, there appears to be several trials evaluating yellow-zone triggered ICS therapy, although evidence of other "intermittent ICS" strategies is limited and may offer different effects. We are aware of at least two ongoing trials (NCT 02066129 and NCT 02298205) registered with www.clinicaltrials.gov that will provide some additional evidence to these research questions in the future.

Since there are several LAMAs other than tiotropium on the US market, it would be valuable to understand their efficacy in asthma management. We are aware of several ongoing clinical trials (NCT 02676089, NCT 02676076, NCT 02433834, NCT 02382510) related to other LAMAs (e.g. glycopyrronium and investigational LAMAs such as TRN-157) in asthma management which may provide future evidence in this area. The same holds true for other combinations of ICS/LABA. Future studies comparing LAMA to controllers other than LABAs would also be of value since currently the evidence base is largest for comparing LAMA to LABA.

Future studies would benefit from consistently defining the severity and control of asthma in the recruited population. There are many potential reasons a patient may be considered to have asthma that is not controlled and this may provide insight into preference for a particular treatment. Future studies should focus on these various causes of having "uncontrolled" asthma as part of investigation for alternative treatments. Knowing more about the severity and control of enrolled participants would also enhance applicability of evidence. Future trials should also consider other subgroups of interest, including racial and ethnic subgroups, and routinely report such results numerically to help decision makers make more individualized treatment decisions. Future studies would also benefit from analyzing and reporting individual components of exacerbation composite outcomes so that various end users can make decisions based on which outcome is most important to them. In addition, studies would benefit from more routine use of validated tools for quality of life and asthma control measurement in addition to incorporation of

health resource utilization outcomes so the impact of therapy outside of exacerbation risk can be more thoroughly evaluated.

Conclusions

Compared to rescue SABA use, adding intermittent ICS use appears to benefit children less than 5 years old with recurrent wheezing in the setting of an RTI. In patients 12 years of age and older with persistent asthma, differences in intermittent ICS versus controller use of ICS were not detected, although few studies provided evidence for this KQ leading to primarily low strength of evidence ratings. Using ICS and LABA as both a controller and quick relief therapy showed benefits over use as a controller medication alone (ICS or ICS and LABA controller). In patients 12 years of age and older with uncontrolled, persistent asthma, adding LAMA to ICS controller or adding LAMA to ICS plus LABA controller compared to ICS or ICS plus LABA alone improves some outcomes. However, adding LAMA to ICS controller compared to adding LABA to ICS controller produced no difference in outcomes.

References

- Expert Panel Report 3: guidelines for the diagnosis and management of asthma. National Asthma Education and Prevention Program, Third Expert Panel on the Diagnosis and Management of Asthma. Bethesda (MD). Report No: 07-4051. Washington, DC: National Heart, Lung, and Blood Institute; 2007.
- Most recent asthma data. Centers for Disease Control and Prevention. Available at: http://www.cdc.gov/asthma/most_recent_data.ht m [Accessed June 15, 2017].
- The Global Asthma Report 2014. Auckland, New Zealand: Global Asthma Network, 2014.
- Asthma national health statistics. Centers for Disease Control and Prevention. Available at: http://www.cdc.gov/nchs/fastats/asthma.htm [Accessed June 15, 2017].
- National Heart, Lung and Blood Advisory Council Asthma Expert Working Group. Needs Assessment Report for Potential Update of the Expert Panel Report-3 (2007): Guidelines for the Diagnosis and Management of Asthma. 2015.
- 6. Herndon JB, Mattke S, Evans CA et al. Antiinflammatory medication adherence, healthcare utilization and expenditure among Medicaid children's health insurance program enrollees with asthma. Pharmacoeconomics. 2012;30:397-412. PMID: 22268444
- 7. Williams LK, Peterson EL, Wells K. et al. Quantifying the proportion of severe asthma exacerbations attributable to inhaled corticosteroid nonadherence. J Allergy Clin Immunol. 2011;128:1185e2-1191.e2. PMID: 22019090
- 8. Morton RW, Everard ML, Elphick HE. Adherence in childhood asthma: the elephant in the room. Arch Dis Child. 2014;99:949-953. PMID: 24876303
- Krishnan JA, Bender BG, Wamboldt FS et al. Adherence to inhaled corticosteroids: an ancillary study of the childhood athma management program clinical trial. J Allergy Clin Immunol. 2012;129:112-118. PMID: 22104610
- Desai M, Oppenheimer JJ. Medication adherence in the asthmatic child and adolescent. Curr Allergy Asthma Rep. 2011;11:454-464. PMID: 21968618

- 11. Lasmar L, Camargos P, Champs NS et al. Adherence rate to inhaled corticosteroids and their impact on asthma control. Allergy. 2009;64:784-789. PMID: 19183166
- Schatz M, Cook EF, Nakahiro R, Petitti D. Inhaled corticosteroids and allergy specialty care reduce emergency hospital use for asthma. J Allergy Clin Immunol.2003;111:503-508. PMID: 12642829
- 13. Sabate E. Adherence to longterm therapies: evidence for action. Geneva: World Health Organization; 2003.
- 14. Jackson DJ. Emerging issues in pediatric asthma: gaps in EPR-3 guidelines for infants and children. Curr Allergy Asthma Rep. 2014;14:477. PMID: 25269401.
- Hoch HE, Szefler SJ. Intermittent steroid inhalation for the treatment of childhood asthma. Expert Rev Clin Immunol. 2016;12:183-194. PMID: 26561351.
- Peters M. Single-inhaler combination therapy for maintenance and relief of asthma. Drugs 2009;69:137-150. PMID: 19228072.
- 17. Spiriva Respimat [package insert]. Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, CT. 2016
- 18. Higgins JPT, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. PMID: 22008217.
- Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in metaanalyses. Available from http://www.ohri.ca/programs/clinical_epidemiol ogy/oxford.asp. Accessed December 13, 2016.
- 20. Viswanathan M, Ansari MT, Berkman ND, et al. Assessing the Risk of Bias of Individual Studies in Systematic Reviews of Health Care Interventions; 2012. In: Methods Guide for Effectiveness and Comparative Effectiveness Reviews. AHRQ Publication No. 10(14)-EHC063-EF. Rockville, MD: Agency for Healthcare Research and Quality; 2014. Chapters available at www.effectivehealthcare.ahrq.gov.

- Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.handbook.cochrane.org.
- 22. Hartung J, Knapp G. On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stats Med. 2001 May;20;1771-82. PMID: 11406840.
- 23. Hartung J, Knapp G. A refined method for metaanalysis of controlled clinical trials with binary outcomes. Stats Med. 2001 Dec;20(24);3875-89. PMID: 11782040.
- 24. Bradburn MJ, Deeks JJ, Berlin JA, et al. Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Stat Med 2007;26:53-77. PMID: 16596572
- Higgins JP, Thomas SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557-60. PMID: 12958120.
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629-34. PMID: 9310563.
- 27. Peters SP, Kunselman SJ, Icitovic N, et al. Tiotropium bromide step-up therapy for adults with uncontrolled asthma. N Engl J Med. 2010 Oct 28:363(18):1715-26. PMID: 20979471.
- 28. Berkman ND, Lohr KN, Ansari M, et al. Grading the Strength of a Body of Evidence When Assessing Health Care Interventions for the Effective Health Care Program of the Agency for Healthcare Research and Quality: An Update, 2013. In: Methods Guide for Effectiveness and Comparative Effectiveness Reviews. AHRQ Publication No. 10(14)-EHC063-EF. Rockville MD: Agency for Healthcare Research and Quality; 2014. Chapters available at www.effectivehealthcare.ahrq.gov.
- 29. Atkins D, Chang S, Gartlehner G, et al.
 Assessing the Applicability of Studies When
 Comparing Medical Interventions; 2010. In:
 Methods Guide for Effectiveness and
 Comparative Effectiveness Reviews. AHRQ
 Publication No. 10(14)-EHC063-EF. Rockville,
 MD: Agency for Healthcare Research and
 Quality; 2014. Chapters available at
 www.effectivehealthcare.ahrq.gov.

- Lazarus SC, Chinchilli VM, Rollings NJ, et al. Smoking affects response to inhaled corticosteroids or leukotriene receptor antagonists in asthma. Am J Respir Crit Care Med. 2007;175:783-90. PMID:17204725
- 31. Berger WE, Bleecker ER, O-Dowd L, et al. Efficacy and safety of budesonide/formoterol pressurized metered-dose inhaler: randomized controlled trial comparing once- and twice-daily dosing in patients with asthma. Allergy Asthma Proc 2010;31:49-59. PMID:20167145
- 32. Methods Guide for Effectiveness and Comparative Effectiveness Reviews. AHRQ Publication No. 10(14)-EHC063-EF. Rockville, MD: Agency for Healthcare Research and Quality; January 2014. Chapters available at www.effectivehealthcare.ahrq.gov.
- 33. Schatz M, Kosinski M, Yarlas A, et al. The minimally important difference of the Asthma Control Test. J Allergy Clin Immunol. 2009;124:719-23. PMID: 19767070.
- Juniper E, Svensson K, Mork AC, et al. Measurement properties and interpretation of three shortened versions of the asthma control questionnaire. Respir Med. 2005 May;99:553-8. PMID: 15823451.
- 35. Juniper EF, Gruffydd-Jones K, Ward S, et al. Asthma Control Questionnaire in children: validation, measurement properties, interpretation. Eur Respir J. 2010;36:1410-6. PMID: 20530041.
- 36. Juniper EF, Buist S, Cox FM, et al. Validation of a standardized version of the Asthma Quality of Life Questionnaire. Chest. 1999;115:1265-70. PMID: 10334138.
- 37. Juniper EF, Guyatt GH, Cox FM, et al. Development and validation of the Mini Asthma Quality of Life Questionnaire. Eur Respir .J 1999;14:32-8. PMID: 10489826.
- 38. Juniper EF, Guyatt GH, Willam A, et al. Determining a minimal important change in disease-specific quality of life questionnaire. J Clin Epidemiol. 1994;47(1):81-7. PMID: 8283197.
- 39. Juniper EF, Svensson K, Mork AC, et al. Modification of the asthma quality of life questionnaire (standardized) for patients 12 years and older. Health Qual Life Outcomes. 2005;3:58. PMID: 16168050.

- 40. Wyrwich KW, Ireland AM, Navaratnam P, et al. Validation of the AQLQ12+ among adolescents and adults with persistent asthma. Qual Life Res. 2011;20:903-12. PMID: 21184185.
- 41. Juniper EF, Guyatt GH, Feeny DH, et al. Measuring quality of life in children with asthma. Qual Life Res 1996;5:35-46. PMID: 8901365.
- 42. Juniper EF, Guyatt GH, Feeny DH, et al. Measuring quality of life in the parents of children with asthma. Qual Life Res. 1996;5:27-34. PMID: 8901364.
- 43. Santanello NC, Zhang J, Seidenberg B, et al. What are minimal important changes for asthma measures in a clinical trial? Eur Respir J. 1999,14:23-7. PMID: 10489824.
- 44. Bacharier LB1, Phillips BR, Zeiger RS, et al. Episodic use of an inhaled corticosteroid or leukotriene receptor antagonist in preschool children with moderate-to-severe intermittent wheezing. J Allergy Clin Immunol. 2008 Dec;122(6):1127-1135. PMID: 18973936.
- 45. Ducharme FM, Lemire C, Noya FJ, et al. Preemptive use of high-dose fluticasone for virus-induced wheezing in young children. N Engl J Med. 2009 Jan 22;360(4):339-53. PMID: 19164187.
- 46. Ghirga G, Ghirga P, Fagioli S, et al. Intermittent treatment with high dose nebulized beclomethasone for recurrent wheezing in infants due to upper respiratory tract infection. Minerva Pediatr. 2002 Jun;54(3):217-20. PMID: 12070480.
- 47. Papi A, Nicolini G, Baraldi E, et al. Regular vs prn nebulized treatment in wheeze preschool children. Allergy. 2009 Oct;64(10):1463-71. PMID: 19772514.
- 48. Svedmyr J, Nyberg E, Thunqvist P, et al. Prophylactic intermittent treatment with inhaled corticosteroids of asthma exacerbations due to airway infections in toddlers. Acta Paediatr. 1999 Jan;88(1):42-7. PMID: 10090546.
- Zeiger RS, Mauger D, Bacharier LB, et al. Daily or intermittent budesonide in preschool children with recurrent wheezing. N Engl J Med. 2011 Nov 24;365(21):1990-2001. PMID: 22111718.

- 50. Milton S. Hershey Medical Center; National Heart, Lung, and Blood Institute (NHLBI). Childhood Asthma Research and Education (CARE) network trial maintenance versus intermittent inhaled steroids in wheezing toddlers (MIST). In: ClinicalTrials.gov. Bethesda, MD: National Library of Medicine (US); 2000- [cited 2016 Dec 2]. https://clinicaltrials.gov/ct2/show/NCT00675584. NLM Identifier: NCT0067558.
- Boushey HA, Sorkness CA, King TS, et al. Daily versus as-needed corticosteroids for mild persistent asthma. N Engl J Med. 2005 Apr 14:352(15):1519-28. PMID: 15829533.
- 52. Calhoun WJ, Ameredes BT, King TS, et al. Comparison of physician-, biomarker-, and symptom-based strategies for adjustment of inhaled corticosteroid therapy in adults with asthma: the BASALT randomized controlled trial. JAMA. 2012 Sep 12;308(10):987-97. PMID: 22968888.
- 53. Milton S. Hershey Medical Center; National Heart, Lung, and Blood Institute (NHLBI). Asthma Clinical Research Network (ACRN) trial- best adjustment strategy for asthma in long term (BASALT). In: ClinicalTrials.gov. Bethesda, MD: National Library of Medicine (US); 2000- [cited 2016 Dec 2]. https://clinicaltrials.gov/ct2/show/NCT00495157 . NLM Identifier: NCT00495157.
- Colland VT, van Essen-Zandvliet LE, Lans C, et al. Poor adherence to self-medication instructions in children with asthma and their parents. Patient Educ Couns. 2004 Dec;55(3):416-21. PMID: 15582348.
- 55. FitzGerald JM, Becker A, Sears MR, et al. Doubling the dose of budesonide versus maintenance treatment in asthma exacerbations. Thorax. 2004 Jul;59(7):550-6. PMID: 15223858.
- 56. Foresi A, Morelli MC, Catena E. Low-dose budesonide with the addition of an increased dose during exacerbations is effective in long-term asthma control. Chest. 2000 Feb;117(2):440-6. PMID: 10669688.
- 57. Gerald JK, Gerald LB, Vasquez MM, et al. Markers of differential response to inhaled corticosteroid treatment among children with mild persistent asthma. J Allergy Clin Immunol Pract. 2015 Jul-Aug;3(4):540-6. PMID: 25783161.

- Gerald JK, Gerald LB, Chinchilli VM, et al. Adherence to rescue inhaled corticosteroid use during the TREXA trial. Am J Respir Crit Care Med. 2012;185:A2200. DOI: http://dx.doi.org/10.1164/ajrccmconference.2012.185.1_MeetingAbstracts.A2200
- Harrison TW, Oborne J, Newton S, et al. Doubling the dose of inhaled corticosteroid to prevent asthma exacerbations: randomised controlled trial. Lancet. 2004 Jan 24;363(9405):271-5. PMID: 14751699.
- 60. Martinez FD, Chinchilli VM, Morgan WJ, et al. Use of beclomethasone dipropionate as rescue treatment for children with mild persistent asthma (TREXA): a randomised, double-blind, placebo-controlled trial. Lancet. 2011 Feb 19;377(9766):650-7. PMID: 21324520.
- 61. Milton S. Hershey Medical Center; National Heart, Lung, and Blood Institute (NHLBI). Childhood Asthma Research and Education (CARE) network trial treating children to prevent exacerbations of asthma (TREXA). In: ClinicalTrials.gov. Bethesda, MD: National Library of Medicine (US); 2000- [cited 2016 Dec 2]. https://clinicaltrials.gov/ct2/show/NCT00394329. NLM Identifier: NCT00394329.
- 62. Oborne J, Mortimer K, Hubbard RB, et al. Quadrupling the dose of inhaled corticosteroid to prevent asthma exacerbations: a randomized, double-blind, placebo-controlled, parallel-group clinical trial. Am J Respir Crit Care Med. 2009 Oct 1;180(7):598-602. PMID: 19590019.
- 63. Papi A, Canonica GW, Maestrelli P, et al. Rescue use of beclomethasone and albuterol in a single inhaler for mild asthma. N Engl J Med. 2007 May 17;356(20):2040-52. PMID: 17507703.
- 64. Turpeinen M, Nikander K, Pelkonen AS, et al. Daily versus as-needed inhaled corticosteroid for mild persistent asthma (The Helsinki early intervention childhood asthma study). Arch Dis Child, 2008 Aug;93(8):654-9. PMID: 17634183.
- 65. Morelli MC, Bordonaro S, Chiesa M, et al. Clinical efficacy of a new treatment regimen with inhaled budesonide in moderate asthma. Eur Respir J. 1996;9;Suppl 12:79s.

- 66. Oborne J, Hubbard RB, Tattersfield AE, et al. Can acute exacerbations of asthma be prevented with a four-fold increase in inhaled corticosteroid dose? Am J Respir Crit Care Med. 2009;179:A2794. DOI: http://dx.doi.org/10.1164/ajrccmconference.2009.179.1_MeetingAbstracts.A2794
- 67. Lahdensuo A, Haahtela T, Herrala, et al. Randomised comparison of guided self management and traditional treatment of asthma over one year. BMJ. 1996 Mar;312(7033):748-52. PMID: 8605463.
- 68. Lahdensuo, Haahtela T, Herrala J, et al. PEF-guided use of an inhaled corticosteroid is successful. The FINNISH asthma-self management study. Eur Respir J. 1994;7;Suppl 18:142s.
- 69. Ambrose HJ, Lawrance RM, Cresswell CJ, et al. Effect of β2-adrenergic receptor gene (ADRB2) 3' untranslated region polymorphisms on inhaled corticosteroid/long-acting β2-adrenergic agonist response. Respir Res. 2012 May 4;13:37. PMID: 22559839.
- Atienza T, Aquino T, Fernández M, et al. Budesonide/formoterol maintenance and reliever therapy via Turbuhaler versus fixed-dose budesonide/formoterol plus terbutaline in patients with asthma: phase III study results. Respirolog. 2013 Feb;18(2):354-63. PMID: 23126237.
- AstraZeneca. Study to investigate the efficacy of Symbicort SMART (SAKURA). In: ClinicalTrials.gov. Bethesda, MD: National Library of Medicine (US); 2000- [cited 2016 Dec 2]. https://clinicaltrials.gov/ct2/show/NCT00839800 . NLM Identifier: NCT00839800.
- 72. Atienza T, Aquino T, Fernandez M, et al. Budesonide/formoterol maintenance and reliever therapy via turbuhaler vs fixed-dose budesonide/formoterol plus terbutaline in patients with asthma: phase iii study results. Am J Respir Crit Care Med. 2012;185:A3950. DOI: http://dx.doi.org/10.1164/ajrccmconference.2012.185.1_MeetingAbstracts.A3950
- 73. Bateman ED, Harrison TW, Quirce S, et al. Overall asthma control achieved with budesonide/formoterol maintenance and reliever therapy for patients on different treatment steps. Respir Res. 2011 Apr 4;12:38. PMID: 21463522.

- Bateman ED, Reddel HK, Eriksson G, et al. Overall asthma control: the relationship between current control and future risk. J Allergy Clin Immunol. 2010 Mar;125(3):600-8. PMID: 20153029.
- Bisgaard H, Le Roux P, Bjåmer D, et al. Budesonide/formoterol maintenance plus reliever therapy: a new strategy in pediatric asthma. Chest. 2006 Dec;130(6):1733-43. PMID: 17166990.
- 76. Bousquet J, Boulet LP, Peters MJ, et al. Budesonide/formoterol for maintenance and relief in uncontrolled asthma vs. high-dose salmeterol/fluticasone. Respir Med. 2007 Dec;101(12):2437-46. PMID: 17905575.
- 77. Buhl R, Kuna P, Peters MJ, et al. The effect of budesonide/formoterol maintenance and reliever therapy on the risk of severe asthma exacerbations following episodes of high reliever use: an exploratory analysis of two randomised, controlled studies with comparisons to standard therapy. Respir Res. 2012 Jul 20;13:59. PMID: 22816878.
- 78. Hozawa S, Terada M, Hozawa M. Comparison of the effects of budesonide/formoterol maintenance and reliever therapy with fluticasone/salmeterol fixed-dose treatment on airway inflammation and small airway impairment in patients who need to step-up from inhaled corticosteroid monotherapy. Pulm Pharmacol Ther. 2014 Apr;27(2):190-6. PMID: 24388868.
- Kardos P. Budesonide/formoterol maintenance and reliever therapy versus free-combination therapy for asthma: a real-life study. Pneumologie. 2013 Aug;67(8):463-70. PMID: 23904191.
- 80. Kuna P. Treatment comparison of budesonide/formoterol with salmeterol/fluticasone propionate in adults aged ≥16 years with asthma: post hoc analysis of a randomized, double-blind study. Clin Drug Investig. 2010;30(9):565-79. PMID: 20593912.
- 81. Kuna P, Peters MJ, Manjra AI, et al. Effect of budesonide/formoterol maintenance and reliever therapy on asthma exacerbations. Int J Clin Pract. 2007 May;61(5):725-36. PMID: 17362472.

- 82. Louis R, Joos G, Michils A, et al. A comparison of budesonide/formoterol maintenance and reliever therapy vs. conventional best practice in asthma management. Int J Clin Pract. 2009 Oct;63(10):1479-88. PMID: 19769705.
- 83. O'Byrne PM, Bisgaard H, Godard PP, et al. Budesonide/formoterol combination therapy as both maintenance and reliever medication in asthma. Am J Respir Crit Care Med. 2005 Jan 15;171(2):129-36. PMID: 15502112.
- 84. Papi A, Corradi M, Pigeon-Francisco C, et al. Beclometasone-formoterol as maintenance and reliever treatment in patients with asthma: a double-blind, randomised controlled trial. Lancet Respir Med. 2013 Mar;1(1):23-31. PMID: 24321801.
- 85. Patel M, Pilcher J, Hancox RJ, et al. The use of β2-agonist therapy before hospital attendance for severe asthma exacerbations: a post-hoc analysis. NPJ Prim Care Respir Med. 2015 Jan 8;25:14099. PMID: 25569185.
- 86. Patel M, Pilcher J, Pritchard A, et al. Efficacy and safety of maintenance and reliever combination budesonide-formoterol inhaler in patients with asthma at risk of severe exacerbations: a randomised controlled trial. Lancet Respir Med. 2013 Mar;1(1):32-42. PMID: 24321802.
- 87. Patel M, Pilcher J, Reddel HK, et al. Predictors of severe exacerbations, poor asthma control, and β-agonist overuse for patients with asthma. J Allergy Clin Immunol Pract. 2014 Nov-Dec;2(6):751-8. PMID: 25439367.
- 88. Patel M, Pilcher J, Shaw D, et al. A randomised controlled trial of single combination budesonide/formoterol inhaler as maintenance and reliever therapy in asthma patietns at risk of severe exacerbations. Thorax. 2013(68):A148. DOI: 10.1136/thoraxjnl-2013-204457.312.
- 89. Pavord ID, Jeffery PK, Qiu Y, et al. Airway inflammation in patients with asthma with high-fixed or low-fixed plus as-needed budesonide/formoterol. J Allergy Clin Immunol. 2009 May;123(5):1083-9. PMID: 19368965.
- Pilcher J, Patel M, Smith A, et al. Combination budesonide/formoterol inhaler as maintenance and reliever therapy in Māori with asthma. Respirology. 2014 Aug;19(6):842-51. PMID: 24889937.

- 91. Quirce S, Barcina C, Plaza V, et al. A comparison of budesonide/formoterol maintenance and reliever therapy versus conventional best practice in asthma management in Spain. J Asthma. 2011 Oct;48(8):839-47. PMID: 21942354.
- AstraZeneca. Symbicort single inhaler therapy vs conventional best practice for the treatment of persistent asthma in adults. In:
 ClinicalTrials.gov. Bethesda, MD: National Library of Medicine (US); 2000- [cited 2016 Dec 2].
 https://clinicaltrials.gov/ct2/show/NCT00385593
 NLM Identifier: NCT00385593.
- 93. Rabe KF, Atienza T, Magyar P, et al. Effect of budesonide in combination with formoterol for reliever therapy in asthma exacerbations: a randomised controlled, double-blind study. Lancet. 2006 Aug 26;368(9537):744-53. PMID: 16935685.
- 94. Rabe KF, Pizzichini E, Ställberg B, et al. Budesonide/formoterol in a single inhaler for maintenance and relief in mild-to-moderate asthma: a randomized, double-blind trial. Chest. 2006 Feb;129(2):246-56. PMID: 16478838.
- 95. Riemersma RA, Postma D, van der Molen T. Budesonide/formoterol maintenance and reliever therapy in primary care asthma management: effects on bronchial hyperresponsiveness and asthma control. Prim Care Respir J. 2012 Mar;21(1):50-6. PMID: 22015542.
- 96. Scicchitano R, Aalbers R, Ukena D, et al. Efficacy and safety of budesonide/formoterol single inhaler therapy versus a higher dose of budesonide in moderate to severe asthma. Curr Med Res Opin. 2004 Sep;20(9):1403-18. PMID: 15383189.
- 97. Sears MR, Boulet LP, Laviolette M, et al. Budesonide/formoterol maintenance and reliever therapy: impact on airway inflammation in asthma. Eur Respir J. 2008 May;31(5):982-9. PMID: 18216054.
- Søes-Petersen U, Kava T, Dahle R, et al. Budesonide/formoterol maintenance and reliever therapy versus conventional best standard treatment in asthma in an attempted 'real life' setting. Clin Respir J. 2011 Jul;5(3):173-82. PMID: 21679353.

- 99. Sovani MP, Whale CI, Oborne J, et al. Poor adherence with inhaled corticosteroids for asthma: can using a single inhaler containing budesonide and formoterol help? Br J Gen Pract. 2008 Jan;58(546):37-43. PMID: 18186995.
- 100. Ställberg B, Ekström T, Neij F, et al. A real-life cost-effectiveness evaluation of budesonide/formoterol maintenance and reliever therapy in asthma. Respir Med. 2008
 Oct;102(10):1360-70. PMID: 18723335.
- 101. Takeyama K, Kondo M, Tagaya E, et al. Budesonide/formoterol maintenance and reliever therapy in moderate-to-severe asthma: effects on eosinophilic airway inflammation. Allergy Asthma Proc. 2014 Mar-Apr;35(2):141-7. PMID: 24717791.
- 102. Takeyama K, Konodo M, Tagaya E, et al. Efficacy and tolerability of budesonide/formoterol maintenance and reliever therapy in Japanese patients with moderate to severe persistent asthma. Am J Respir Crit Care Med. 2013;187:A2730. Embase 71982190.
- 103. Vogelmeier C, D'Urzo A, Pauwels R, et al. Budesonide/formoterol maintenance and reliever therapy: an effective asthma treatment option? Eur Respir J. 2005 Nov;26(5):819-28. PMID: 16264042.
- 104. Vogelmeier C, Naya I, Ekelund J.

 Budesonide/formoterol maintenance and reliever therapy in Asian patients (aged ≥16 years) with asthma: a sub-analysis of the COSMOS study. Clin Drug Investig. 2012 Jul 1;32(7):439-49. PMID: 22607479.
- 105. Weatherall M, Patel M, Pilcher J, et al. Predictors of severe asthma exacerbations, poor asthma control and beta-agonist overuse in adult asthma. Eur Respir J. 2013;42:P776. Embase 71842638.
- 106.Pilcher J, Patel M, Smith A, et al. Single budesonide/formoterol inhaler as maintenance and reliever therapy is beneficial in Maori asthma. Respirology. 2013;18;Suppl 2:44.
- 107. Kuna P, Peters M, Buhl R. Budesonide/formoterol for maintenance and relief vs. higher dose ICS/LABA therapy: outcomes in patients symptomatic on high-dose inhaled corticosteroids (HDICS). Eur Respir J. 2007;30;Suppl 51:357s.

- 108.Bousquet J, Boulet LP, AHEAD Investigators. Budesonide/formoterol as maintenance and reliever therapy in uncontrolled asthma compared with high dose salmeterol/fluticasone: the AHEAD double-blind study. Eur Respir J. 2007;30;Suppl 51:358s.
- 109.Rabe KF, Pizzichini E, Stallberg B, et al. Single inhaler therapy with budesonide/formoterol provides superior asthma control compared with fixed dosing with budesonide plus terbutaline asneeded. J Allergy Clin Immunol. 2004 Feb;113;Suppl 2:S116.
- 110. Scicchitano R, Aalbers R, Ukena D, et al. Single inhaler therapy with budesonide/formoterol reduces the risk of severe exacerbations compared with budesonide plus terbutaline asneeded in patients with asthma. J Allergy Clin Immunol. 2004 Feb;113; Suppl 2:S116.
- 111.Pistolesi M, Godard P, Aalbers R, et al.
 Budesonide/formoterol single inhaler therapy
 (SiT) provides superior asthma control compared
 with fixed dose (FD) budesonide or
 budesonide/formoterol in patients with severe
 persistent asthma. Eur Respir J. 2004;24;Suppl
 48:509s.
- 112. Sovani MP, Whale CI, Oborne J, et al. The effect of providing a single inhaler containing formoterol and budesonide to be used once daily and as required on inhaled budesonide use and asthma control in poorly compliant patients. Thorax. 2004;59;Suppl ii:ii11.
- 113.Lin JT, Chen P, Zhou X, et al.

 Budesonide/formoterol maintenance and reliever therapy in Chinese patients with asthma. Chin Med J. 2012 Sep;125(17):2994-3001. PMID: 22932169.
- 114.Loh LC, Lim BK, Raman S, et al.
 Budesonide/formoterol combination therapy as both maintenance and reliever medication in moderate-to-severe asthma: a real-life effectiveness study of Malaysian patients. Med J Malaysia. 2008 Aug;63(3):188-92. PMID: 19248687.
- 115.Lundborg M, Wille S, Bjermer L, et al.

 Maintenance plus reliever budesonide/formoterol compared with a higher maintenance dose of budesonide/formoterol plus formoterol as reliever therapy in asthma: an efficacy and costeffectiveness study. Curr Med Res Opin. 2006 May;22(5):809-21. PMID: 16709303.

- 116.Pilcher J, Patel M, reddel H et al. Effect of smoking status on the efficacy of SMART regimen in high risk asthma.

 Respirology.2016;21:858-866. PMID: 26897389
- 117. Hozawa S, Terada M, Haruta Y, Hozawa M. Comparison of early effects of budesonide/formoterol maintenance and reliever therapy with fluticasone furoate/Vilanterol for asthma patients requiring step-up from inhaled corticosteroid monotherapy. Pulmonary Pharmacology & Therapeutics. 2016;37:15-23. PMID: 26850307
- 118.Bateman ED, Kornmann O, Schmidt P, et al. Tiotropium is noninferior to salmeterol in maintaining improved lung function in B16-Arg/Arg patients with asthma. J Allergy Clin Immun. 2011 Aug;128(2):315-22. PMID: 21807250.
- 119. Kerstjens HA, Casale TB, Bleecker ER, et al. Tiotropium or salmeterol as add-on therapy to inhaled corticosteroids for patients with moderatesymptomatic asthma: two replicate, double-blind, placebo-controlled, parallel-group, active-comparator, randomised trials. Lancet Respir Med. 2015 May;3(5):367-76. PMID: 25682232.
- 120.Lee LA, Yang S, Kerwin E, et al. The effect of fluticasone furoate/umeclidinium in adult patients with asthma: a randomized, doseranging study. Respir Med. 2015 Jan;109(1):54-62. PMID: 25452139.
- 121.Ohta K, Ichinose M, Tohda Y, et al. Long-term once-daily tiotropium respimat is well tolerated and maintains efficacy over 52 weeks in patients with symptomatic asthma in Japan: a randomized, placebo-controlled study. PLoS One. 2015 Apr 20;10(4):e0124109. PMID: 25894430.
- 122.Paggiaro P, Halpin DM, Buhl R, et al. The effect of tiotropium in symptomatic asthma despite low- to medium-dose inhaled corticosteroids: a randomized controlled trial. J Allergy Clin Immunol Pract. 2016 Jan-Feb;4(1):104-13. PMID: 26563670.
- 123. Hamelmann E, Bateman ED, Vogelberg C, et al. Tiotropium add-on therapy in adolescents with moderate asthma: A 1-year randomized controlled trial. J Allergy Clin Immunol. 2016 Aug;138(2):441-450. PMID: 26960245.

124.Boehringer Ingelheim. Efficacy and safety of tiotropium and salmeterol in moderate persistent asthma patients homozygous for B16-Arg/Arg. In: ClinicalTrials.gov. Bethesda, MD: National Library of Medicine (US); 2000- [cited 2016 Nov 29].

https://clinicaltrials.gov/ct2/show/NCT00350207 . NLM Identifier: NCT00350207.

125.Boehringer Ingelheim. Evaluation of tiotropium 2.5 and 5 mcg once daily delivered via the Respimat® inhaler compared to placebo and salmeterol hydrofluoroalkane (HFA) metered dose inhaler (MDI) (50 mcg twice daily) in patient with moderate persistent asthma I. In: ClinicalTrials.gov. Bethesda, MD: National Library of Medicine (US); 2000- [cited 2016 Nov 29].

https://clinicaltrials.gov/ct2/show/NCT01172808 . NLM Identifier: NCT01172808.

126.Boehringer Ingelheim. Evaluation of tiotropium 2.5 and 5 mcg once daily delivered via the Respimat® inhaler compared to placebo and salmeterol hydrofluoroalkane (HFA) metered dose inhaler (MDI) (50 mcg twice daily) in patient with moderate persistent asthma II. In: ClinicalTrials.gov. Bethesda, MD: National Library of Medicine (US); 2000- [cited 2016 Nov 29].

https://clinicaltrials.gov/ct2/show/NCT01172821 . NLM Identifier: NCT01172821.

127.Boehringer Ingelheim. Evaluation of tiotropium 2.5 and 5μg once daily delivered via the respimat inhaler compared to placebo in patient with moderate to severe persistent asthma. In: ClinicalTrials.gov. Bethesda, MD: National Library of Medicine (US); 2000- [cited 2016 Nov 29].

https://clinicaltrials.gov/ct2/show/NCT01340209 . NLM Identifier: NCT01340209.

128.Boehringer Ingelheim. Efficacy and safety of 2 doses of tiotropium via respimat in adult patients with mild persistent asthma. In: ClinicalTrials.gov. Bethesda, MD: National Library of Medicine (US); 2000- [cited 2016 Nov 29].

https://clinicaltrials.gov/ct2/show/NCT01316380 . NLM Identifier: NCT01316380.

129.Boehringer Ingelheim. Efficacy and safety of 2 doses of tiotropium via respimat compared to placebo in adolescents with moderate persistent asthma. In: ClinicalTrials.gov. Bethesda, MD: National Library of Medicine (US); 2000- [cited 2016 Nov 29]. https://clinicaltrials.gov/ct2/show/NCT01275230. NLM Identifier: NCT01275230.

- 130.Milton S. Hershey Medical Center. Asthma
 Clinical Research Network (ACRN) trial —
 tiotropium bromide as an alternative to increased
 inhaled corticosteroid in patients inadequately
 controlled on a lower dose of inhaled
 corticosteroid (TALC). In: ClinicalTrials.gov.
 Bethesda, MD: National Library of Medicine
 (US); 2000- [cited 2016 Nov 29].
 https://clinicaltrials.gov/ct2/show/NCT00565266
 . NLM Identifier: NCT00565266.
- 131.Casale T, Bleecker E, Meltzer E, et al. Phase III trials to investigate tiotropium as add-on therapy to inhaled corticosteroids for patients with symptomatic asthma: trial design and planned statistical analysis. Allergy. 2013;68;Suppl 97:377.
- 132.Casale TB, Bateman ED, Dahl R, et al.
 Tiotropium respimat add-on therapy reduces airflow obstruction in patients with symptomatic moderate asthma, independent of T_H2 inflammatory status. J Allergy Clin Immun. 2014 Feb;133(2);Suppl:AB5. DOI: http://dx.doi.org/10.1016/j.jaci.2013.12.040.
- 133.Kerstjens H, Bleecker E, Meltzer E, et al. Tiotropium as add-on to inhaled corticosteroids significantly improves asthma control as reflected by the ACQ responder rate. Respirology. 2014; 19;Suppl 2:78.
- 134. Kerstjens H, Bleecker E, Meltzer E, et al. Tiotropium as add-on therapy to inhaled corticosteroids for patients with symptomatic asthma: lung function and safety. Respirology. 2014;19 Suppl 2:78.
- 135. Kerstjens HAM, Bleecker E, Meltzer E, et al. Tiotropium as add-on to inhaled corticosteroids significantly improves asthma control as reflected by the ACQ responder rate. Eur Respir J. 2013;42;Suppl 57:P4130.
- 136.Kerstjens HAM, Bleecker E, Meltzer E, et al. Tiotropium as add-on to inhaled corticosteroids for patients with symptomatic asthma: lung function and safety. Eur Respir J. 2013;42;Suppl 57:P4629.

- 137. Yang WH, Casale T, Bateman ED ,et al. Tiotropium respimat add-on therapy reduces airflow obstruction in patients with symptomatic moderate asthma, independent of $T_{\rm H}2$ inflammatory status. Allergy Asthma Clin Immunol. 2014;10;Suppl 2:A52. DOI: 10.1186/1710-1492-10-S2-A52.
- 138.Ohta K, Ichinose M, Tohda, et al. Once-daily tiotropium respimat is well tolerated and efficacious over 52 weeks in Japanese patients with symptomatic asthma receiving inhaled corticosteroids (ics) \pm long-acting β 2-agonist (laba): a randomized, double-blind, placebocontrolled study. Am J Respir Crit Care Med. 2014;189:A1311.
- 139.Paggiaro P, Engel M, Tudoric N, et al. Phase III trial of tiotropium as add-on therapy to low-dose inhaled corticosteroids for patients with symptomatic mild persistent asthma: design and planned analyses. Eur Respir J. 2013;42;Suppl 57:P4133.
- 140.Paggiaro P, Halpin DMG, Buhl R, et al. Tiotropium respmat add-on to inhaled corticosteroids improve lung function in patients with symptomatic mild asthma: results from a phase III trial. J Allergy Clin Immunol. 2014;133(2);Suppl:AB4. DOI: http://dx.doi.org/10.1016/j.jaci.2013.12.039.
- 141.Dahl R, Szefler SJ, Bernstein J, et al. Safety and tolerability of once-daily tiotropium respimat add-on to at least inhaled corticosteroid maintenance therapy in adolescent patients with moderate or severe symptomatic asthma. Allergy. 2015;70;Suppl 101:34-5.
- 142.Hamelmann E, Boner A, Bernstein J, et al. 1-year efficacy and safety study of tiotropium respimat add-on to ICS in adolescent patients with symptomatic asthma. Eur Respir J. 2014;44;Suppl 58:1889.
- 143. Vandewalker M, Harper T, Moroni-Zentgraf P, et al. Once-daily tiotropium respimat add-on therapy improves lung function in adolescent patients with moderate symptomatic asthma, independent of T helper 2 inflammatory status. Ann Allergy Asthma Immunol. 2015;115:A54-5.
- 144.Peters SP, Bleecker ER, Kunselman SJ, et al. Predictors of response to tiotropium versus salmeterol in asthmatic adults. J Allergy Clin Immunol. 2013 Nov;132(5):1068-1074. PMID: 24084072.

- 145.Confirmatory trials: Spiriva respimat in adult and adolescent patients with asthma. Ridgefield, CT: Boehringer Ingelheim Pharmecuticals, Inc. 2016 Nov.
- 146.Rajanandh MG, Nageswari AD, Ilango K. Pulmonary function assessment in mild to moderate persistent asthma patients receiving montelukast, doxofylline, and tiotropium with budesonide: a randomized controlled study. Clin Ther. 2014 Apr 1;36(4):526-33. PMID: 24650447.
- 147.Rajanandh MG, Nageswari AD, Ilango K. Assessment of montelukast, doxofylline, and tiotropium with budesonide for the treatment of asthma: which is the best among the second-line treatment? A randomized trial. Clin Ther. 2015 Feb 1;37(2):418-26. PMID: 25577543.
- 148. Wechsler ME, Yawn BP, Fuhlbrigge AL, et al. Anticholinergic vs long-acting β-agonist in combination with inhaled corticosteroids in black adults with asthma: the BELT randomized clinical trial. JAMA. 2015 Oct 27;314(16):1720-30. PMID: 26505596.
- 149.Rajanandh MG, Nageswari AD, Ilango K.
 Assessment of various second-line medications in addition to inhaled corticosteroid in asthma patients: a randomized controlled trial. Clin Exp Pharmacol Physiol. 2014 Jul;41(7):509-13. PMID: 24738981.
- 150. Kerstjens HA, Engel M, Dahl, et al. Tiotropium in asthma poorly controlled with standard combination therapy. N Engl J Med. 2012 Sep 27;367(13):1198-207. PMID: 22938706.
- 151.Wang K, Tian P, Fan Y, et al. Assessment of second-line treatments for patients with uncontrolled moderate asthma. Int J Clin Exp Med. 2015 Oct 15;8(10):19476-80. PMID: 26770595.
- 152. Hamelmann E, Bernstein JA, Vandewalker M, et al. A randomised controlled trial of tiotropium in adolescents with severe symptomatic asthma. Eur Respir J. 2016 Nov 3;pii:ERJ-01100-2016. Epub 2016 Nov 3. PMID: 27811070.
- 153.Boehringer Ingelheim. Evaluation of tiotropium 5μg/day delivered via the respimat inhaler over 48 weeks in patients with severe persistent asthma (study I). In: ClinicalTrials.gov. Bethesda, MD: National Library of Medicine (US); 2000- [cited 2016 Nov 30]. https://clinicaltrials.gov/ct2/show/NCT00772538 . NLM Identifier: NCT00772538.

- 154.Boehringer Ingelheim. Evaluation of tiotropium 5μg/day delivered via the respimat inhaler over 48 weeks in patients with severe persistent asthma (study II). In: ClinicalTrials.gov. Bethesda, MD: National Library of Medicine (US); 2000- [cited 2016 Nov 30]. https://clinicaltrials.gov/ct2/show/NCT00776984. NLM Identifier: NCT00776984.
- 155.Bernstein JA, Kerstjens HAM, Moroni-Zentgraf P, et al. Once-daily tiotropium is well tolerated as add-on to standard treatment for patients with symptomatic asthma despite receiving inhaled corticosteroids and long-acting β_2 -agonists. Chest. 2013;144(4_MeetingAbstracts):89A. DOI: 10.1378/chest.1701649.
- 156.Casale TB, Halpin DM, Engel M, et al. 24-hour efficacy of tiotropium respimat in asthma. J Gen Intern Med. 2015;30;Suppl 2:S83.
- 157.Corren J, Frew A, Engel M, et al. Tiotropium as add-on therapy to ICS+LABA in patients with symptomatic severe asthma: spirometric assessment over 24 hours. Chest. 2013;144(4_MeetingAbstracts):91A. DOI: 10.1378/chest.1702134.
- 158.Corren J, Murphy KR, Bensch G, et al. Oncedaily tiotropium respimat decreases the risk of exacerbations, independent of baseline characteristics, in patients with symptomatic severe asthma without evidence of chronic obstructive pulmonary disease. J Gen Intern Med. 2014;29;Suppl 1:S157-8.
- 159.Dahl R, Doherty DE, Corren J, et al. Once-daily tiotropium respimat improves lung function in patietns with severe symptomatic asthma independent of leukotriene modifier use. Thorax. 2014;69;Suppl 2:A178. DOI: 10.1136/thoraxjnl-2014-206260.358.
- 160.Dahl R, Paggiaro P, Engel M, et al. Once-daily tiotropium improves lung function and reduces risk of asthma exacerbation/worsening in patients with symptomatic asthma, regardless of allergic status. Allergy. 2013;68;Suppl 97:40.
- 161.Doherty DE, Tashkin DP, Harrison TW, et al. Improvements in lung function with tiotropium as add-on controller therapy to ICS+LABA for patients with severe symptomatic asthma. Chest. 2013;144(4_MeetingAbstracts):88A. DOI: 10.1378/chest.1702143.

- 162. Halpin DM, Bateman ED, Moroni-Zentgraf P, et al. Tiotropium is effective in patients with severe asthma without evidence of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187:A2731.
- 163.Halpin DMG, Bateman ED, Moroni-Zentgraf P, et al. Tiotropium is effective in patients with severe asthma without evidence of chronic obstructive pulmonary disease. Thorax. 2013;68;Suppl 3:A152. DOI: 10.1136/thoraxjnl-2013-204457.320.
- 164.Halpin DMG, Bateman ED, Tashkin DP, et al. Tiotropium decreases the risk of exacerbations in patients with symptomatic asthma regardless of baseline characteristics including markers of allergic status. Thorax. 2013;68;Suppl 3:A149-50. DOI: 10.1136/thoraxjnl-2013-204457.314.
- 165.Halpin DMG, Paggiaro P, Bateman ED, et al. Once-daily tiotropium respimat add-on to at least ICS maintenance therapy reduces exacerbation risk in patients with uncontrolled symptomatic asthma. Thorax. 2014;69;Suppl 2:A189. DOI: 10.1136/thoraxjnl-2014-206260.383.
- 166. Hayden M, Engel M, Schmidt H, et al. Efficacy of once-daily tiotropium respimat 5μg from phase III trials in adults with symptomatic asthma. J Am Pharm Assoc. 2015;55(2):e242-3.
- 167.Hoy H, Engel M, Schmidt H, et al. Once-daily tiotropium respimat: safety and tolerability results from phase III trials in adults with symptomatic asthma. J Am Pharm Assoc. 2015;55(2):e244.
- 168. Hozawa S, Kerstjens HAM, Tashkin DP, et al. Tiotropium decreases the risk of exacerbations in patients with symptomatic asthma regardless of baseline characteristics. Respirology. 2013;18;Suppl 4:175.
- 169. Kerstjens HAM, Tashkin DP, Engel M, et al. Tiotropium decreases the risk of exacerbations in patients with symptomatic asthma regardless of baseline characteristics. Am J Respir Crit Care Med. 2013;187(1_MeetingAbstracts):A4217. DOI: 10.1164/ajrccmconference.2013.187.1_Meeting Abstracts.A4217.
- 170.Murphy K, Berger W, Engel M, et al. Tiotropium respimat: control in symptomatic asthma. J Gen Intern Med. 2015;30;Suppl 2:S77.

- 171.Murphy K, Dahl R, Paggiaro P, et al. Once-daily tiotropium respimat add-on to at least inhaled corticosteroid maintenance therapy reduces airflow obstruction in patients with symptomatic asthma, independent of allergic status. J Am Pharm Assoc. 2015;55(2):e243.
- 172. Tashkin DP, Moroni-Zentgraf P, Engel M, et al. Once-daily tiotropium reduces risk of exacerbations and asthma worsening in patients with symptomatic asthma despite treatment with inhaled corticosteroids and long-acting β_2 -agonists. Chest. 2013;144(4_MeetingAbstracts):90A. DOI: 10.1378/chest.1701739.
- 173. Kerstjens HA, Moroni-Zentgraf P, Tashkin DP, et al. Tiotropium improves lung function, exacerbation rate, and asthma control, independent of baseline characteristics including age, degree of airway obstruction, and allergic status. Respir Med. 2016 Aug;117:198-206. PMID: 27492532.
- 174.Boner A, Hamelmann E, Bernstein J, et al. Oneyear efficacy and safety study of tiotropium respimat add-on to ICS in adolescent patients with symptomatic asthma. Orally presented at: 24th Annual Congress of the European Respiratory Society. 2014 Sep 8; Munich, Germany.

Glossary

Asthma control: The degree to which the manifestations of asthma (symptoms, functional impairments, exacerbations) are minimized. Asthma control is determined by assessing the domains of impairment (patient self-reported symptoms, nighttime awakenings, rescue SABA use, interference with normal activities; objective measures of lung function) and risk (exacerbations requiring oral systemic corticosteroids).

Asthma severity: The intrinsic intensity of the disease process. Asthma severity is assessed in a patient who is not currently receiving controller therapy using the domains of impairment (patient self-reported symptoms, nighttime awakenings, rescue SABA use, interference with normal activities; objective measures of lung function) and risk (exacerbations requiring oral systemic corticosteroids) or it is inferred from the least amount of treatment required to maintain control. Asthma severity is classified as "intermittent", "mild persistent", "moderate persistent", or "severe persistent".

Controlled asthma: Minimal manifestations of asthma symptoms and functional impairments, as determined by assessment of the impairment and risk domains.

Controller therapy: Medications recommended to be taken daily on a long-term basis to achieve and maintain control of persistent asthma. Long-term controller medications include inhaled corticosteroids, inhaled long-acting bronchodilators, leukotriene modifiers, cromolyn, theophylline, immunomodulators, and oral systemic corticosteroids.

Intermittent dosing: The prescribed use of ICS that is not the same on a daily basis. As prescribed, intermittent ICS dosing may specify variations in the dose or frequency of administration of ICS. The determinant of ICS use with intermittent ICS dosing may be a patient decision (based on need), an index of worsening asthma, or some other pre-defined criteria.

Persistent asthma: A classification of asthma severity defined either by the assessment of the impairment (patient self-reported symptoms, nighttime awakenings, rescue SABA use, interference with normal activities; objective measures of lung function) and/or risk (exacerbations requiring oral systemic corticosteroids) domains in a patient not taking controller therapy or use of controller therapy to achieve and maintain asthma control. Persistent asthma is further sub-divided as "mild persistent", "moderate persistent", and "severe persistent".

Quick-relief therapy: Medication to be used as-needed for acute symptom relief.

Uncontrolled asthma: A lack of asthma control, as determined by assessment of the impairment and/or risk domains.

Abbreviations

Abbreviation Definition

ACQ Asthma Control Questionnaire

ACT Asthma Control Test

AQLQ Asthma Quality of Life Questionnaire

AQLQ(S) Standardized Asthma Quality of Life Questionnaire

AUC Area Under the Curve
CBP Conventional Best Practice

CI Confidence Intervals

EPC Evidence-based Practice Centers

EPR Expert Panel Report ER Emergency Room

FEV1 Forced Expiratory Volume in 1 second

FVC Forced Vital Capacity

HR Hazard Ratio

ICS Inhaled Corticosteroid

ICTRP International Controlled Trials Registry Platform

KQ Key Question

LABA Long-acting β₂ Agonists

LAMA Long-acting Muscarinic Antagonists
LTRA Leukotriene Receptor Antagonist
mAPI modified Asthma Prediction Index

MD Mean Difference

NAEPP National Asthma Education and Prevention Program

NHLBI National Heart, Lung and Blood Institute

OR Odds Ratio

PACQLQ Pediatric Asthma Caregivers Asthma Quality of Life Questionnaire

PAQLQ Pediatric Asthma Quality of Life Questionnaire

PEF Peak Expiratory Flow

PICOTS Population, Intervention, Comparison, Outcomes, Timing, Setting

RCT Randomized Controlled Trial

RR Relative Risk

RTI Respiratory Tract Infection SABA Short-acting β_2 Agonists SOE Strength of Evidence UK United Kingdom US United States

Appendixes

Contents

Appendix A. Search Strategy	A-1
Appendix B. List of Excluded Studies	
Appendix C. Study Characteristics	C-1
Appendix D. Risk of Bias Assessment	D-1
Appendix E. Strength of Evidence Assessments	
Appendix F. Forest Plots.	
Tables	
Table C-1. Study and population characteristics for KQ 1c	C-1
Table C-2. Study level outcomes for KQ1a, intermittent ICS vs. no therapy	
Table C-3. Study level outcomes for KQ1a, intermittent ICS with as-needed SABA vs. I	CS
controller with as-needed SABA	C-8
Table C-4. Study level outcomes for KQ1a, intermittent ICS with as-needed SABA vs. a	ıs-needed
SABA	
Table C-5. Study and population characteristics for KQ1b, intermittent ICS and ICS con	troller vs.
ICS controller	
Table C-6. Study and population characteristics for KQ1b, intermittent ICS versus ICS c	
Table C-7. Study level outcomes for KQ1b, intermittent ICS and ICS controller vs. ICS	controller
Table C-8. Study level outcomes for KQ1b, intermittent ICS versus ICS controller	
Table C-9. Study and population characteristics for KQ1c, ICS and LABA controller and	
relief vs. ICS controller (same dose)	-
Table C-10. Study and population characteristics for KQ1c, ICS and LABA controller at	
relief vs. ICS (higher dose)	
Table C-11. Study and population characteristics for KQ1c, ICS and LABA controller at	
relief vs. ICS and LABA controller (same dose)	
Table C-12. Study and population characteristics for KQ1c, ICS and LABA controller at	
relief vs. ICS and LABA controller (higher dose))	-
Table C-13. Study and population characteristics for KQ1c, ICS and LABA controller at	nd quick
relief vs. ICS and LABA controller (lower dose))	-
Table C-14. Study and population characteristics for KQ1c, ICS and LABA controller at	nd quick
relief vs. CBP)	
Table C-15. Study level outcomes for KQ1c, ICS and LABA controller and quick relief	vs. ICS
controller (same dose)	C-35
Table C-16. Study level outcomes for KQ1c, ICS and LABA controller and quick relief	vs. ICS
controller (higher dose))	C-39
Table C-17. Study level outcomes for KQ1c, ICS and LABA controller and quick relief	
and LABA controller (same dose))	
Table C-18. Study level outcomes for KQ1c, ICS and LABA controller and quick relief	
and LABA (higher dose))	C-49

Table C-19. Study level outcomes for KQ1c, ICS and LABA controller and quick relief	vs. ICS
and LABA (lower dose))	C-53
Table C-20. Study level outcomes for KQ1c, ICS and LABA controller and quick relief	vs. CBP)
Table C-21. Study and population characteristics for KQ2a)	
Table C-22. Study level outcomes for KQ2a)	
Table C-23. Subgroup analysis by tiotropium dose for KQ2a)	
Table C-24. Study and population characteristics for KQ2b)	
Table C-25. Study level outcomes for KQ2b)	
Table C-26. Study and population characteristics for KQ2c)	
Table C-27. Study level outcomes for KQ2c)	
Table D-1. Risk of bias assessment for KQ1a)	
Table D-2. Risk of bias assessment for KQ1b	
Table D-3. Risk of bias assessment for KQ1c, ICS and LABA controller and quick relief	
controller (same dose)	
Table D-4. Risk of bias assessment for KQ1c, ICS and LABA controller and quick relief	
controller (higher dose)	
Table D-5. Risk of bias assessment for KQ1c, ICS and LABA controller and quick relief	D-3
and LABA controller (same dose)	
Table D-6. Risk of bias assessment for KQ1c, ICS and LABA controller and quick relief	
and LABA controller (higher dose)	
Table D-7. Risk of bias assessment for KQ1c, ICS and LABA controller and quick relief	
and LABA controller (lower dose)	
Table D-8. Risk of bias assessment for KQ1c, ICS and LABA controller and quick relief	
-	
Table D-9. Risk of bias assessment for non-randomized studies, KQ1c	
Table D-10. Risk of bias assessment for KQ2a	
Table D-11. Risk of bias assessment for KQ2b	
Table D-12. Risk of bias assessment for KQ2c	
Table E-1. Strength of evidence KQ1a, intermittent ICS with as-needed SABA vs. as-needed	
SABASalengti of evidence KQ1a, interinitient ICS with as-needed SABA vs. as-needed	
Table E-2. Strength of evidence KQ1a, intermittent ICS with as-needed SABA vs. ICS c	
with as-needed SABA	E-3
Table E-3. Strength of evidence KQ1a, intermittent ICS vs. no therapy	
Table E-4. Strength of evidence KQ1b, intermittent ICS vs. no therapy	
Table E-5. Strength of evidence KQ1b, intermittent ICS versus ICS controller	
Table E-6. Strength of evidence KQ1c, ICS and LABA as controller and quick relief vs.	
controller (same dose)	
Table E-8. Strength of evidence rating KQ1c, ICS and LABA controller and quick relief	
controller (higher dose)	E-10
Table E-9. Strength of evidence rating KQ1c, ICS and LABA controller and quick relief	
and LABA controller (same dose)	
Table E-10. Strength of evidence rating KQ1c, ICS and LABA controller and quick relie	
and LABA controller (higher dose)	
Table E-11. Strength of evidence rating KQ1c, ICS and LABA controller and quick relie	
and LABA controller (lower dose)	E-22

Table E-12. Strength of evidence rating KQ1c, ICS and LABA controller and quick relief vs. CBP
E-24
Table E-13. Strength of evidence rating KQ2a, LAMA as add-on to ICS vs. doubling ICS dose
E-26
Table E-14. Strength of evidence rating KQ2a, LAMA vs. placebo as add-on to ICSE-28
Table E-15. Strength of evidence rating KQ2b, LAMA vs. LABA as add-on toE-30
Table E-16. Strength of evidence rating KQ2b, LAMA vs. controller other than LABA as add-on
to ICS
Table E-17. Strength of evidence rating KQ2c E-34
Figures
Figure F-1. Asthma-related acute care visit: intermittent ICS with as-needed SABA vs. as-needed
SABAF-1
Figure F-2. Hospital admissions due to asthma: intermittent ICS with as-needed SABA vs. as-
needed SABAF-1
Figure F-3. All-cause death: ICS and LABA controller and quick relief vs. ICS and LABA
Controller (Same Dose)F-1
Figure F-4. Change in ACQ-5 mean score from baseline: ICS and LABA controller and quick
relief vs. ICS and LABA Controller (Same Dose)F-2
Figure F-5. Change in on-treatment FEV1 from baseline: ICS and LABA controller and quick
relief vs. ICS and LABA Controller (Same Dose)F-2
Figure F-6. Change in rescue medication use from baseline, mean inhalations per day: ICS and
LABA controller and quick relief vs. ICS and LABA Controller (Same Dose)F-2
Figure F-7. All-cause death: ICS and LABA controller and quick relief vs. ICS and LABA
Controller (Higher Dose)F-3
Figure F-8. All-cause death: ICS and LABA controller and quick relief vs. CBPF-3
Figure F-9. Change in ACQ-5 mean score from baseline: ICS and LABA controller and quick
relief vs. CBPF-3
Figure F-10. Change in ACQ-7 score from baseline: LAMA vs. placebo as add-on to ICSF-4
Figure F-11. ACQ-7 responder: LAMA vs. placebo as add-on to ICSF-4
Figure F-12. Change in FEV1 peak from baseline: LAMA vs. placebo as add-on to ICSF-4
Figure F-13. Change in FEV1 trough from baseline: LAMA vs. placebo as add-on to ICSF-5
Figure F-14. Change in FEV1 AUC from baseline: LAMA vs. placebo as add-on to ICSF-5
Figure F-15. Change in FVC peak from baseline: LAMA vs. placebo as add-on to ICSF-5
Figure F-16. Change in FVC trough from baseline: LAMA vs. placebo as add-on to ICSF-6
Figure F-17. Change in FVC AUC from baseline: LAMA vs. placebo as add-on to ICSF-6
Figure F-18. Difference in rescue medication mean puffs in 24 hours: LAMA vs. placebo as add-
on to ICS
Figure F-19. All-Cause Death: LAMA vs. LABA as add-on to ICS
Figure F-20. Asthma-specific death: LAMA vs. LABA as add-on to ICS
Figure F-21. Change in FEV1 trough from baseline: LAMA vs. LABA as add-on to ICSF-7
Figure F-22. Change in FEV1 % predicted from baseline: LAMA vs. LABA as add-on to ICS F-8
Figure F-23. Change in FVC trough from baseline: LAMA vs. LABA as add-on to ICSF-8
Figure F-24. Change in AQLQ score from baseline: LAMA vs. LABA as add-on to ICSF-8

Figure F-25. Difference in rescue medication mean puffs in 24 hours: LAMA vs. LABA as add-on to ICSF-9
Figure F-26. Change in ACQ-7 score from baseline: LAMA and ICS and LABA vs. ICS and
LABAF-9
Figure F-27. Change in FEV1 peak from baseline: LAMA and ICS and LABA vs. ICS and LABA
F-9
Figure F-28. Change in FEV1 trough from baseline: LAMA and ICS and LABA vs. ICS and
LABAF-10
Figure F-29. Change in FEV1 AUC from baseline: LAMA and ICS and LABA vs. ICS and LABA
F-10
Figure F-30. Change in FVC peak from baseline: LAMA and ICS and LABA vs. ICS and LABA
F-10
Figure F-31. Change in FVC trough from baseline: LAMA and ICS and LABA vs. ICS and LABA
F-11
Figure F-32. Change in FVC AUC from baseline: LAMA and ICS and LABA vs. ICS and LABA
F-11
Figure F-33. Difference in rescue medication mean puffs in 24 hours: LAMA and ICS and LABA
vs. ICS and LABAF-11

Appendix A. Search Strategy

Search for KQ 1- Medline, Cochrane Central and Cochrane Database of Systematic Reviews- via Ovid

- 1. Asthma.mp or Asthma/
- 2. Wheez\$.mp.
- 3. Bronchial spasm/ or bronchospas\$.mp.
- 4. Bronchoconstriction/ or bronchoconstrict\$.mp.
- 5. Bronchial hyperreactivity/
- 6. Reactive airway disease.mp.
- 7. 1 or 2 or 3 or 4 or 5 or 6
- 8. Inhaled corticosteroid.mp.
- 9. Inhal\$.mp.
- 10. Ciclesonide.mp.
- 11. Fluticasone/ or fluticasone.mp.
- 12. Flunisolide.mp.
- 13. Beclomethasone/ or beclomethasone.mp.
- 14. Budesonide/ or budesonide.mp.
- 15. Mometasone furoate/ or mometasone.mp.
- 16. Triamcinolone/ or triamcinolone.mp.
- 17. 9 AND (10 or 11 or 12 or 13 or 14 or 15 or 16)
- 18. "Single inhaler".mp. OR "single maintenance and reliever therapy".mp. OR SMART
- 19. 8 or 17 or 18
- 20. 7 and 19
- 21. Limit 20 to humans

Search for KQ 1- Embase

- 1. 'asthma'/de OR asthma
- 2. 'wheezing'/de OR wheezing
- 3. 'wheeze'/de OR wheeze
- 4. 'bronchospasm'/de OR 'bronchospasm'
- 5. 'bronchoconstriction'/de OR 'bronchoconstriction'
- 6. 'bronchial hyperreactivity'/de OR
- 7. 'reactive airway disease'
- 8. #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7
- 9. 'ciclesonide'/exp/dd ih
- 10. 'budesonide'/exp/dd_ih
- 11. 'fluticasone'/exp/dd ih
- 12. 'flunisolide'/exp/dd_ih
- 13. 'beclomethasone'/exp/dd_ih
- 14. 'mometasone'/exp/dd_ih
- 15. 'triamcinolone'/exp/dd_ih
- 16. 'single maintenance and rescue therapy'
- 17. 'single inhaler therapy'
- 18. #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17
- 19. #8 AND #18

Search for KQ 2- Medline, Cochrane Central and Cochrane Database of Systematic Reviews- via Ovid

- 1. Asthma.mp or Asthma/
- 2. Wheez\$.mp.
- 3. Bronchial spasm/ or bronchospas\$.mp.
- 4. Bronchoconstriction/ or bronchoconstrict\$.mp.
- 5. Bronchial hyperreactivity/
- 6. Reactive airway disease.mp.
- 7. 1 or 2 or 3 or 4 or 5 or 6
- 8. Long acting muscarinic antagonist.mp.
- 9. Tiotropium bromide/ or tiotropium.mp.
- 10. Aclidinium.mp.
- 11. Glycopyrronium.mp. or glycopyrrolate/ or glycopyrrolate.mp.
- 12. Umeclidinium.mp.
- 13. 9 or 10 or 11 or 12
- 14. 8 or 13
- 15. 7 and 14
- 16. Limit 15 to humans

Search for KQ 2- Embase

- 20. 'asthma'/de OR asthma
- 21. 'wheezing'/de OR wheezing
- 22. 'wheeze'/de OR wheeze
- 23. 'bronchospasm'/de OR 'bronchospasm'
- 24. 'bronchoconstriction'/de OR 'bronchoconstriction'
- 25. 'bronchial hyperreactivity'/de OR
- 26. 'reactive airway disease'
- 27. #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7
- 28. 'long acting muscarinic antagonist'
- 29. 'tiotropium'/exp/dd_ih
- 30. 'aclidinium'/exp/dd ih
- 31. 'glycopyrronium'/exp/dd_ih
- 32. "glycopyrrolaye'/exp/dd_ih
- 33. 'umeclidinium'/exp/dd ih
- 34. #9 OR #10 OR #11 OR #12 OR #13 OR #14
- 35. #8 AND #15

Appendix B. List of Excluded Studies

ICS Search

- 1. 2nd WAO International Scientific Conference, WISC 2012, Abstracts. World Allergy Organ J. 2013;6;Suppl 1:1-67. [Not an intervention of interest]
- 2. A combination of fluticasone and salmeterol for asthma. Med Lett Drugs Ther. 2001 Apr 16;43(1102):31-3. PMID: 11309534. [Not a human study]
- 3. Aalbers R, Backer V, Kava TTK, et al. Adjustable maintenance dosing with budesonide/formoterol compared with fixed-dose salmeterol/fluticasone in moderate to severe asthma. Curr Med Res Opin. 2004;20(2):225-40. PMID: 15006018. [Not an intervention of interest]
- 4. Aalbers R, Mensing M, Boorsma M, et al. Protective effect of budesonide /formoterol in a model of repeated exposure to inhaled adenosine 5'-monophosphate (AMP) in patients with asthma. Eur Respir J. 2007;30;Suppl 51:353s. [Not an intervention of interest]
- 5. Aalbers R. Fixed or adjustable maintenance-dose budesonide/formoterol compared with fixed maintenance-dose salmeterol/fluticasone propionate in asthma patients aged >or=16 years: Post hoc analysis of a randomized, double-blind/open-label extension, parallel-group study. Clin Drug Invest. 2010;30(7):439-51. PMID: 20528000. [Not an intervention of interest]
- 6. Aalbers R. Single inhaler as maintenance and reliever therapy--is it SMART? Lancet Respir Med. 2013 Mar;1(1):2-3. PMID: 24321788. [Not a human study]
- 7. Abramson M, Sim MR. Occupational asthma. Thorax. 2006 Sep;61(9):741-2. [Not a human study]
- 8. Acun C, Tomac N, Sogut A, et al. A comparison of inhaled budesonide and oral prednisolone for children with acute asthma. 2003 Sep;22;Suppl 45:134s. [Not in the target population]

- 9. Adachi M, Ishihara K, Inoue H, et al. Safety and efficacy of inhaled ciclesonide in long-term administration to adult patients with bronchial asthma. Ther Res. 2008;29(5):821-32. [Not an intervention of interest]
- Adelroth E, Thompson S. Advantages of high-dose inhaled budesonide. Lancet. 1988 Feb 27;1(8583):476. PMID: 2893900. [Not an intervention of interest]
- 11. Adelsberg B. Combined budesonide and formoterol for maintenance and relief provided better asthma control than budesonide for maintenance and terbutaline for relief: commentary. Evid-Based Med. 2006 Oct;11(5):138. [Not a human study]
- 12. Adler LM, Clarke IC. Efficacy and safety of beclomethasone dipropionate (BDP) delivered via a novel dry powder inhaler (Clickhaler[TM]) in paediatric patients with asthma. Thorax. 1997;52;Suppl 6:A57 P106. [Not an intervention of interest]
- 13. Adolfsson LE, Lundgren M, Tilling B, et al. Short-term safety and tolerability of double-dose salmeterol/fluticasone propionate in adult asthmatic patients. Clin Drug Invest. 2005;25(4):231-41. DOI: 10.2165/00044011-200525040-00002. [Not an intervention of interest]
- 14. Aelony Y. Inhaled fluticasone and zafirlukast in persistent asthma. Am J Med. 2002 Mar;112(4):333. PMID: 11893383. [Not a human study]
- 15. Affrime MB, Banfield C, Nolop K. Systemic bioavailability of inhaled corticosteriods: appropriate and comparable methodology. Eur Respir J. 2001;18(1):246. [Not a human study]

- 16. Afilalo M, Guttman A, Colacone A, et al. Efficacy of inhaled steroids (beclomethasone dipropionate) for treatment of mild to moderately severe asthma in the emergency department: A randomized clinical trial. Ann Emerg Med. 1999 Mar;33(3):304-9. PMID: 10036345. [Not in the target population]
- 17. Agarwal SK, Arshad N. Utility of high dose inhaled fluticasone therapy for the early management of acute exacerbations of asthma [Abstract]. European Respiratory Society; 2009 Sep 12-16; Vienna, Austra. E4352. [Not in the target population]
- 18. Agarwal SK, Sharma S. Effect of fluticasone/formoterol pressurized metered-dose inhaler (pMDI) in early management o facute exacerbations of asthma. Am J Respir Crit Care Med. 2010;181:A5659. [Not in the target population]
- 19. Agarwal SK, Sharma S. Utility of inhaled corticosteroids (fluticasone/formoterol) by pressurized metered-dse inhaler for the early management of acute exacerbations of asthma [Abstarct]. European Respiratory Society; 2010 Ssep 18-22; Barcelona, Spain. E5476. [Not in the target population]
- 20. Agerroft L, Pedersen S. Comparison of lower leg growth rate in prepubertal children with mild asthma treated with inhaled placebo, ciclesonide, or fluticasone propionate. Allergy. 2007;62:131. [Not an intervention of interest]
- 21. Agerroft L, Pedersen S. Inhaled ciclesonide does not effect lower leg growth rate or HPA-axis function in children with mild asthma. Eur Respir J. 2004;24;Suppl 48:377s. [Not an intervention of interest]
- 22. Agerroft L, Pedersen S. Lower-leg growth rate and APA-axis function in children with asthma during treatment with inhaled ciclesonide. J Allergy Clin Immunol. 2004;113;Suppl 2:S119. [Not an intervention of interest]

- 23. Agertoft L, Pedersen S. Bone mineral density in children with asthma receiving long-term treatment with inhaled budesonide. Am J Respir Crit Care Med. 1998
 Jan;157(1):178-83. PMID: 9445297.
 [Excluded study design]
- 24. Agertoft L, Pedersen S. Effects of long-term treatment with an inhaled corticosteroid on growth and pulmonary function in asthmatic children. Respir Med. 1994 May;88(5):373-81. PMID: 8036306. [Not an intervention of interest]
- 25. Agertoft L, Pedersen S. Influence of inspiratory flow rate on plasma levels and lung deposition of fluticasone propionate inhaled from diskus dry powder inhaler. European Respiratory Society; 1999 Oct 9-13; Madrid, Spain. 1264p. [Irretrievable]
- 26. Agertoft L, Pederson S. Long term growth in children with inhaled budesonide or nedocromil. Eur Respir J. 2000;16;Suppl 31:553s. [Irretrievable]
- 27. Akhtaruzzaman M, Ahmed SU, Hoque MA, et al. Effects of nebulized budesonide as an adjunct to standard treatment of asthma exacerbations: A randomized, double-blind, placebo-controlled trial. Mymensingh Med J. 2014 Jul;23(3):418-25. PMID: 25178590. [Not in the target population]
- 28. Akkoca O, Mungan D, Karabiyikoglu G, et al. Inhaled and systemic corticosteroid therapies: Do they contribute to inspiratory muscle weakness in asthma? Respiration. 1999;66(4):332-7. PMID: 10461081. [Not an intervention of interest]
- 29. Alangari AA, Malhis N, Mubasher M, et al. Budesonide nebulization added to systemic prednisolone in the treatment of acute asthma in children: A double-blind, randomized, controlled trial. Chest. 2014 Apr;145(4):772-8. PMID: 24384609. [Not in the target population]

- 30. Aldridge RE, Hancox RJ, Cowan JO, et al. Eosinophils and eosinophilic cationic protein in induced sputum and blood: Effects of budesonide and terbutaline treatment. Ann Allergy Asthma Immunol. 2002
 Nov;89(5):492-7. [Not an intervention of interest]
- 31. Allen DB, Bronsky EA, LaForce CF, et al. Growth in asthmatic children treated with fluticasone propionate. J Pediatr. 1998 Mar;132(3 Pt 1):472-7. PMID: 9544904. [Not an intervention of interest]
- 32. Allen DB. Effect of inhaled corticosteroids on growth. Pediatrics. 2001 Nov;108(5):1234-5. PMID: 11694712. [Not a human study]
- 33. Allen DB. Sense and sensitivity: assessing inhaled corticosteroid effects on the hypothalamic-pituitary-adrenal axis. Ann Allergy Asthma Immunol. 2002 Dec;89(6):537-9. [Not a human study]
- 34. Allen HD, Thong IG, Clifton-Bligh P, et al. Effects of high-dose inhaled corticosteroids on bone metabolism in prepubertal children with asthma. Pediatr Pulmonol. 2000 Mar;29(3):188-93. PMID: 10686039. [Not an intervention of interest]
- 35. Al-Samri MT, Benedetti A, Prefontaine D, et al. Variability of sputum inflammatory cells in asthmatic patients receiving corticosteroid therapy: A prospective study using multiple samples. J Allergy Clin Immunol. 2010 May;125(5):1161,1163.e4. PMID: 20392486. [Not an intervention of interest]
- 36. Altintas DU, Karakoc GB, Can S, et al. The effects of long term use of inhaled corticosteroids on linear growth, adrenal function and bone mineral density in children. Allergol Immunopathol (Madr). 2005 Jul-Aug;33(4):204-9. PMID: 16045858. [Not an intervention of interest]
- 37. Amar NJ, Shekar T, Varnell T, et al.

 Mometasone furoate (MF) improves lung
 function in pediatric asthma: a dose-ranging
 study of MF metered-dose inhaler (MDI). J
 Allergy Clin Immunol. 2016;137;2 Suppl
 1:AB214. Embase 72197450. [Not an
 intervention of interest]

- 38. Amirav I, Newhouse MT. Treatment failures in children with asthma due to inappropriate use of turbuhaler. J Pediatr. 2002;140(4):483. [Excluded study design]
- Anaev E, Chuchalin A. The efficiency of inhaled budesonide for patients with bronchila asthma. Eur Respir J. 2000;16;Suppl 31:279s. [Excluded study design]
- 40. Anderson W, McFarlane L, Lipworth B. Prospective follow-up of novel bone turnover markers in asthmatics exposed to low or high doses of inhaled ciclesonide over 1 year. Eur Respir J. 2012 Sep 5;40;Suppl 56:P2100. Embase 71926472. [Not an intervention of interest]
- 41. Anderson WJ, McFarlane LC, Lipworth BJ. Prospective follow-up of novel markers of bone turnover in persistent asthmatics exposed to low and high doses of inhaled ciclesonide over 12 months. J Clin Endocrinol Metab. 2012 Jun;97(6):1929-36. PMID: 22438232. [Not an intervention of interest]
- 42. Anderson WJ, Short PM, Williamson PA, et al. The FENOtype trial: inhaled corticosteroid dose-response using domiciliary exhaled nitric oxide in persistent asthma. Thorax. 2012;67;Suppl 2:A5. [Not an intervention of interest]
- 43. Angus R, Reagon R, Cheesbrough A. Shortacting beta 2-agonist and oral corticosteroid use in asthma patients prescribed either concurrent beclomethasone and long-acting beta 2-agonist or salmeterol/fluticasone propionate combination. Int J Clin Pract. 2005 Feb;59(2):156-62. PMID: 15854190. [Not an intervention of interest]
- 44. Ankerst J, Malolepszy J, Eliraz A.
 Budesonide/formoterol in a single inhaler is
 more effective than a higher dose of inhaled
 corticosteroids in patients with persistent
 asthma. Eur Respir J. 2002;20;Suppl 38:387s.
 [Not an intervention of interest]

- 45. Ankerst J, Persson G, Weibull E. A high dose of budesonide/formoterol in a single inhaler was well tolerated by asthmatic patients. Eur Respir J. 2000;16;Suppl 31:33s. [Not an intervention of interest]
- 46. Ankerst J, Persson G, Weibull E. Cardiovascular effects of a high dose of the budesonide/formoterol single inhaler in asthmatic patients. Eur Respir J. 2001;18;Suppl 33:54s. [Not an intervention of interest]
- 47. Ankerst J, Persson G, Weibull E. Tolerability of a high dose of budesonide/formoterol in a single inhaler in patients with asthma. Pulm Pharmacol Ther. 2003;16(3):147-51. PMID: 12749830. [Not an intervention of interest]
- 48. Anthonisen NR. Step-down therapy in a asthma. Can Respir J. 2006 Apr;13(3):123-4. [Irretrievable]
- 49. Anthracopoulos MB, Papadimitriou A, Panagiotakos DB, et al. Growth deceleration of children on inhaled corticosteroids is compensated for after the first 12 months of treatment. Pediatr Pulmonol. 2007
 May;42(5):465-70. PMID: 17394256. [Not an intervention of interest]
- 50. Antonicelli L, Micucci C, Bonifazi F. Bronchospasm induced by inhalant corticosteroids: The role of ethanol. Allergy. 2006 Jan;61(1):146-7. PMID: 16364174. [Excluded study design]
- 51. Apold J, Djoseland O. Inhaled beclomethasone dipropionate in the treatment of childhood asthma. Postgrad Med J. 1975;51(Suppl 4):104-5. PMID: 1105511. [Not an intervention of interest]
- 52. Apold J, Djoseland O. Inhaled beclomethasone dipropionate in the treatment of childhood asthma. Postgrad Med J. 1975;51;Suppl 4:104-5. [Duplicate]
- 53. Appel DW. Effect of aminophylline when added to metaproterenol sulfate and beclomethasone dipropionate aerosol. J Allergy Clin Immunol. 1984 Feb;73(2):291-7. PMID: 6699312. [Not an intervention of interest]

- 54. Archer H, Creese K, Doull I, et al. Higher dose inhaled steroids in childhood asthma. Br Med J. 2001 Jun 06;322(7301):1546. [Not a human study]
- 55. Arend EE, Fischer GB, Debiasi M, et al. Inhaled corticosteroid treatment and growth of asthmatic children seen at outpatient clinics. J Pediatr (Rio J). 2006 May-Jun;82(3):197-203. PMID: 16773175. [Not an intervention of interest]
- 56. Arshad H, Holgate ST. Effect of low doses of mometasone furoate (MF) dry powder inhaler (DPI) on adenosine monophosphate (AMP)-induced bronchoconstriction in asthma. European Respiratory Society; 1999 Oct 9-13; Madrid, Spain. 2239p. [Irretrievable]
- 57. Arvidsson P, Larsson S, Lofdahl CG, et al. Inhaled formoterol during one year in asthma: A comparison with salbutamol. Eur Respir J. 1991 Nov;4(10):1168-73. PMID: 1687129. [Excluded study design]
- 58. Aubier M, Buhl R, Ekstrom T, et al. Comparison of two twice-daily doses of budesonide/formoterol maintenance and reliever therapy. Eur Respir J. 2010 Sep;36(3):524-30. PMID: 20595145. [Not an intervention of interest]
- 59. Aubier M, Buhl R, Haughney J, et al. Predictive factors for asthma control according to ACQ5 in asthma patients treated with budesonide/ formoterol maintenance and reliever therapy. results from the EuroSMART study. Irish J Med Sci. 2010 Nov 6;179;Suppl 12:S474. DOI: 10.1007/s11845-010-0593-0. [Not an intervention of interest]
- 60. Aubier M, Haughney J, Selroos O, et al. Is the patient's baseline inhaled steroid dose a factor for choosing the budesonide/formoterol maintenance and reliever therapy regimen? Therap adv respir dis. 2011 Oct;5(5):289-98. PMID: 21586508. [Not an intervention of interest]

- 61. Ayres JG, Campbell LM. A controlled assessment of an asthma self-management plan involving a budesonide dose regimen. OPTIONS research group. Eur Respir J. 1996 May;9(5):886-92. PMID: 8793447. [Not an intervention of interest]
- 62. Baba K, Hattori T, Koishikawa I, et al. Serum eosinophil cationic protein for predicting the prognosis of a step-down in inhaled corticosteroid therapy in adult chronic asthmatics. J Asthma. 2000 Aug;37(5):399-408. PMID: 10983617. [Excluded study design]
- 63. Baba K, Sakakibara A, Yagi T, et al. Long-term observations of the clinical course after step down of corticosteroid inhalation therapy in adult chronic asthmatics:

 Correlation with serum levels of eosinophil cationic protein. Respirology. 2002

 Sep;7(3):255-66. PMID: 12153692. [Not an intervention of interest]
- 64. Bacci E, Novelli F, Bartoli ML, et al. Patients with moderate asthma symptoms may benefit from short term inhaled corticosteroid monotherapy. Eur Respir J. 2007;30;Suppl 51:615s. [Not an intervention of interest]
- 65. Bacharier LB. "Step-down" therapy for asthma: why, when, and how? J Allergy Clin Immunol. 2002;109(6):916-9. [Not a human study]
- 66. Bahçeciler NN, Barlan IB, Nuhoglu Y, et al. Risk factors for the persistence of respiratory symptoms in childhood asthma. Ann Allergy Asthma Immunol. 2001;86(4):449-55. [Not an intervention of interest]
- 67. Bahna SL. Is it time to reduce our phobia of inhaled corticosteroids? Pediatrics. 2004 Jun;113(6):1813-4. PMID: 15173513. [Not a human study]
- 68. Bajraktarevic A, Maglajlija S, Penava S, et al. Effectiveness of fluticasone propionate and rare adverse effects in preschoolers with asthma. Allergy. 2011;66;S94:584. [Not an intervention of interest]

- 69. Balanag VM, Yunus F, Yang P, et al. Budesonide/formoterol in a single inhaler is as effective and well tolerated as salbutamol in relieving aacute asthma in adults and adolescents. Eur Respir J. 2003122;Suppl 45:Abstract P2836. [Not in the target population]
- 70. Balanag VM, Yunus F, Yang P, et al. Efficacy and safety of budesonide/formoterol compared with salbutamol in the treatment of acute asthma. Pulm Pharmacol Ther. 2006;19(2):139-47. PMID: 16009588. [Not in the target population]
- 71. Balanzat A, Centanni S, Palmqvst M, et al. Budesonide/formterol single inhaler therapy reduces overreliance on rapid-acting reliever medication. Eur Respir J. 2004;24;Suppl 48:344s. [Excluded study design]
- 72. Balter MS, Bell AD, Kaplan AG, et al. Management of asthma in adults. CMAJ. 2009 Dec;181(12):915-22. [Not a human study]
- 73. Baraldi E, Rossi GA, Boner AL. Budesonide in preschool-age children with recurrent wheezing. N Engl J Med. 2012 Feb;366(6):570-1. [Not a human study]
- 74. Barnes N, Laviolette M, Allen D, et al. Effects of montelukast compared to double dose budesonide on airway inflammation and asthma control. Respir Med. 2007 Aug;101(8):1652-8. PMID: 17481879. [Not an intervention of interest]
- 75. Barnes N, Price D, Colice G, et al. Asthma control with extrafine-particle hydrofluoroalkane-beclometasone vs. large-particle chlorofluorocarbon-beclometasone: A real-world observational study. Clin Exp Allergy. 2011 Nov;41(11):1521-32. PMID: 21752116. [Not an intervention of interest]
- 76. Barnes PJ, O'Byrne PM, Rodriguez Roisin R, et al. Treatment of mild persisitent asthma with low doses of inhaled budesonide alone or in combination with formoterol. Thorax. 2000;55;Suppl 3:A4. [Not an intervention of interest]

- 77. Barnes PJ. A single inhaler for asthma? Am J Respir Crit Care Med. 2005 Jan;171(2):95-6. [Not a human study]
- 78. Barnes PJ. Using a combination inhaler (budesonide plus formoterol) as rescue therapy improves asthma control. BMJ. 2007 Sep 8;335(7618):513. PMID: 17823193. [Not a human study]
- 79. Barrueto L, Mallol J, Figueroa L.
 Beclomethasone dipropionate and salbutamol by metered dose inhaler in infants and small children with recurrent wheezing. Pediatr Pulmonol. 2002 Jul;34(1):52-7. PMID: 12112798. [Not an intervention of interest]
- 80. Bateman ED, Bantje TA, Joao Gomes M, et al. Budesonide/formoterol in a single inhaler improves asthma control more effectively than a higher dose of fluticasone. Eur Respir J. 2001;18;Suppl 33:21s. [Not an intervention of interest]
- 81. Bateman ED, Bantje TA, Joao Gomes M, et al. Early and sustained benefits of budesonide and formoterol in a single inhaler vs fluticasone in moderate asthma. Eur Respir J. 2001;18;Suppl 33:157s. [Not an intervention of interest]
- 82. Bateman ED, Bousquet J, Keech ML, et al. The correlation between asthma control and health status: The GOAL study. Eur Respir J. 2007 Jan;29(1):56-62. PMID: 17050557. [Not an intervention of interest]
- 83. Bateman ED, Buhl R, O'Byrne PM, et al. Development and validation of a novel risk score for asthma exacerbations: the risk score for exacerbations. J Allergy Clin Immunol. 2015 Jun;135(6):1457,64.e4. PMID: 25258144. [Excluded study design]
- 84. Bateman ED, Palmqvist M, Juniper EF, et al. Single inhaler therapy with budesonside/formoterol has superior efficacy to fixed-dose budesonide/formoterol or a higher dose of budesonide alone [Abstract]. American Thoracic Society International Conference; 2004 May 21-26; Orlando, FL. J75p. [Irretrievable]

- 85. Bauer K, Bantje TA, Sips AP, et al. The effect of inhaled fluticasone propionate FP, a new potent corticosteroid in severe asthma. Eur Respir J. 1988;1;Suppl 2:201s. [Not an intervention of interest]
- 86. Baxter-Jones AD, Helms PJ, Russell G, et al. Early asthma prophylaxis, natural history, skeletal development and economy (EASE): A pilot randomised controlled trial. Health Technol Assess. 2000;4(28):1-89. PMID: 11074396. [Not an intervention of interest]
- 87. Baxter-Jones AD, Helms PJ. Early introduction of inhaled steroids in wheezing children presenting in primary care. A pilot study. EASE study group. Clin Exp Allergy. 2000 Nov;30(11):1618-26. PMID: 11069572. [Not an intervention of interest]
- 88. Bayiz H, Ozkaya S, Dirican A, et al. The rapid effects of budesonide plus formoterol in patients with obstructive airway diseases. Drug Des Devel Ther. 2015;9:5287-90. PMID: 26451084. [Excluded study design]
- 89. Beasley R, Cushley M, Holgate ST. A self management plan in the treatment of adult asthma. Thorax. 1989 Mar;44(3):200-4. PMID: 2705150. [Excluded study design]
- 90. Beasley R, Pavord I, Papi A, et al.

 Description of a randomised controlled trial of inhaled corticosteroid/fast-onset LABA reliever therapy in mild asthma. Eur Respir J. 2016 2016 Mar;47(3):981-4. [Not a human study]
- 91. Beasley R, Sterk PJ, Kerstjens HAM, et al. Comparative studies of inhaled corticosteroids in asthma. Eur Respir J. 2001;17(4):579-80. [Not a human study]
- 92. Becker AB, Paré PD. Wheezing in young children: WAITing for pharmacogenomics? Lancet Respir Med. 2014 Oct;2(10):776-7. [Not a human study]
- 93. Becker AB. Asthma in the preschool child: still a rose by any other name? J Allergy Clin Immunol. 2008 Dec;122(6):1136-7. PMID: 19084109. [Not a human study]

- 94. Beigelman A, King TS, Mauger D, et al. Do oral corticosteroids reduce the severity of acute lower respiratory tract illnesses in preschool children with recurrent wheezing?. J Allergy Clin Immunol. 2013;131(6):1518-1525.e14. DOI: 10.1016/j.jaci.2013.01.034. [Not an intervention of interest]
- 95. Beigelman A, Zeiger RS, Mauger D, et al. The association between vitamin D status and the rate of exacerbations requiring oral corticosteroids in preschool children with recurrent wheezing. J Allergy Clin Immunol. 2013;133(5):1489-92.e3. [No outcomes of interest]
- 96. Bell A, McIvor RA. SMART therapy. CMAJ. 2006 Aug 1;175(3):276-7. PMID: 16880449. [Not a human study]
- 97. Ben-Aryeh H, Berdicevsky I, Zinmann P, et al. Salivary composition and oral candida in asthmatic children and the effect of inhaled drugs. J Oral Med. 1985 Jul-Sep;40(3):123-6. PMID: 3928845. [Not an intervention of interest]
- 98. Benbow AG, Naya IP. Patient compliance with inhaled medication: does combining beta-agonists with corticosteroids improve compliance?. Eur Respir J. 1994 Aug;7(8):1554. PMID: 7957846. [Not a human study]
- 99. Bennati D, Piacentini GL, Peroni DG, et al. Changes in bronchial reactivity in asthmatic children after treatment with beclomethasone alone or in association with salbutamol. J Asthma. 1989;26(6):359-64. PMID: 2702243. [Not an intervention of interest]
- 100. Berger WE, Ford LB, Mahr T, et al. Efficacy and safety of fluticasone propionate 250 microg administered once daily in patients with persistent asthma treated with or without inhaled corticosteroids. Ann Allergy Asthma Immunol. 2002 Oct;89(4):393-9. PMID: 12392384. [Not an intervention of interest]

- 101. Berger WE, Leflein JG, Uryniak T, et al. Long term efficacy and resource utilization after treatment with budesonide and formoterol administered via one pressurized metered dose inhaler (pMDI) compared with budesonide dry powder inhaler (DPI) alone in children with asthma. J Allergy Clin Immunol. 2008;21;2 Suppl 1:S8. [Not an intervention of interest]
- 102. Berger WE, Noonan M, Weinstein SF, et al. Effect of inhaled mometasone furoate on the use of rescue medication in children aged 4-11 years with mild to moderate persistent asthma. J Allergy Clin Immunol. 2009;123;2 Suppl 1:S7. [Not an intervention of interest]
- 103. Berger WE, Qaqundah PY, Blake K, et al. Safety of budesonide inhalation suspension in infants aged six to twelve months with mild to moderate persistent asthma or recurrent wheeze. J Pediatr. 2005 Jan;146(1):91-5. PMID: 15644830. [Not an intervention of interest]
- 104. Berglund E, Lofdahl CG, Svedmyr N. Dosing of inhaled corticosteroids and therapeutic goals in asthmatic patients. Eur J Respir Dis. 1984 Jul;65(5):319-20. PMID: 6745334. [Not a human study]
- 105. Bernstein D, Nathan R, Ledford D, et al. Ciclesonide, a new inhaled corticosteroid, significantly improves asthma-related quality of life in patients with severe, persistent asthma. J Allergy Clin Immunol. 2005;115;2 Suppl:S210. [Not an intervention of interest]
- 106. Bernstein DI, Hebert J, Cheema A, et al. Efficacy and onset of action of mometasone furoate/formoterol and fluticasone propionate/salmeterol combination treatment in subjects with persistent asthma. Allergy Asthma Clin Immunol. 2011;7(1):21. [Not an intervention of interest]

- 107. Bernstein DI, Rachelfsky G, Chrvinsky P, et al. Mometasone furoate dry powder inhaler improves pulmonary function in patients with persistent asthma previously using inhaled corticosteroids: efficacy analysis based on baseline FEV1 [Abstract]. Chest; 2002; San Diego, CA. P424p. [Not an intervention of interest]
- 108. Bielory L, Piccone F, Rabinowitz P, et al. Multicentre, randomised, parallel-group study of the efficacy and tolerability of flunisolide administered once daily via AeroChamber in the treatment of mild to moderate asthma. Clin Drug Investig. 2000;19(2):93-101. Embase 2000093460. [Not an intervention of interest]
- 109. Bilderback A, Krishnan JA, Riekert KA, et al. Patterns of use for oral montelukast and inhaled fluticasone in a clinical trial [Abstract]. American Thoracic Society International Conference; 2004 May 21-26; Orlando, Florida. C18p. [Irretrievable]
- 110. Bisgaard H, Gillies J, Groenewald M, et al. Efficacy of inhaled fluticasone propionate in the treatment of young children with asthmatic symptoms: a dose comparison study. Am J Respir Crit Care Med. 1998;157;Suppl 3:A711. [Not an intervention of interest]
- 111. Bisgaard H, Hermansen MN, Loland L, et al. Intermittent inhaled corticosteroids in infants with episodic wheezing. N Engl J Med. 2006 May 11;354(19):1998-2005.
 PMID: 16687712. [Not in the target population]
- 112. Bisgaard H, Munck S, Nielsen JP, et al. Recurrent wheezing in children below 3 years treated with inhaled budesonide. Eur Respir J. 1990;3;Suppl 10:298S. [Not an intervention of interest]
- 113. Bisgaard H, Munck SL, Nielsen JP, et al. Inhaled budesonide for treatment of recurrent wheezing in early childhood. Lancet (London, England). 1990 Sep 15;336(8716):649-51. PMID: 1975851. [Not an intervention of interest]

- 114. Bisgaard H. Systemic activity of inhaled topical steroid in toddlers studied by knemometry. Acta Paediatr. 1993
 Dec;82(12):1066-71. PMID: 8155929. [Not an intervention of interest]
- 115. Black P. Inhaled steroid maintenance treatment of severe asthma. Lancet. 1993 Feb 13;341(8842):445-6. PMID: 8094218. [Not a human study]
- 116. Bleecker ER, Bateman ED, Busse W, et al. Fluticasone furoate (FF), an inhaled corticosteroid (ICS), is efficacious in asthma patients symptomatic on low doses of ICS therapy [Abstract]. European Respiratory Society Annual Congress; 2010 Sep 18-22; Barcelona, Spain. P1167. [Not an intervention of interest]
- 117. Bloom J, Calhoun W, Koenig S, et al. Fluticasone propionate/salmeterol 100/50mcg is inhaled steroid sparing in patients who require fluticasone propionate 250mcg for asthma stability [Abstract]. American Thoracic Society 99th International conference; 2003; D034 Poster C33p. [Not an intervention of interest]
- 118. Bodzenta-Lukaszyk A, Buhl R, Balint B, et al. Fluticasone/formoterol combined in a single aerosol inhaler vs budesonide/formoterol for the treatment of asthma: A non-inferiority trial [Abstract]. European Respiratory Society Annual Congress; 2011 Sep 24-28; Amsterdam, The Netherlands. P894. [Not an intervention of interest]
- 119. Boskovska MI, Dokic D, Busletic Bozinovska K, et al. Concomitant use of low-dose inhaled corticosteroids and a longacting bronchodilatator visavi doubling the dose of inhaled corticosteroid in asthma patients. Eur Respir J. 2001;18;Suppl 33:98s. [Not an intervention of interest]
- 120. Bosman H G, van Uffelen R. Different effects of inhaled beclomethasone dipropionate and oral prednisone on bronchial hyperresponsiveness in asthma. Eur Respir J. 1990;3;Suppl 10:134S. [Not an intervention of interest]

- 121. Boushey HA. Daily inhaled corticosteroid treatment should not be prescribed for mild persistent asthma. Am J Respir Crit Care Med. 2005 discusion 414-5; Aug 15;172(4):412-4. PMID: 16081554. [Not a human study]
- 122. Bousquet J, Miravitlles M, Wiren A. Budesonide/formoterol provides better efficacy at a lower or similar cost as compared to high-dose salmeterol/fluticasone treatment. Eur Respir J. 2007;30;Suppl 51:193s. [Excluded study design]
- 123. Boyter AC, Ford NH, Zlotos L. Audit of budesonide/formoterol prescribing for asthma in community pharmacy in the U.K. Respir Med. 2011 Jun;105(6):864-8. PMID: 21227673. [Not an intervention of interest]
- 124. Breath-actuated inhaler improves asthma control. Pharm J. 2001 Oct ;267(7169):497. [Not a human study]
- 125. Brenner BE, Chavda KK, Camargo CAJ. Randomized trial of inhaled flunisolide versus placebo among asthmatic patients discharged from the emergency department. Ann Emerg Med. 2000 Nov;36(5):417-26. PMID: 11054193. [Not in the target population]
- 126. Bright P. High dose nebulized steroid in the treatment of chronic steroid dependent asthma. Respir Med. 1992 Nov;86(6):528-9. PMID: 1470714. [Not a human study]
- 127. British Thoracic and Tuberculosis
 Association (BTTA), British Thoracic and
 Tuberculosis Association. Inhaled
 corticosteroids compared with oral
 prednisone in patients starting long-term
 corticosteroid therapy for asthma. Lancet.
 1975;2(7933):469-73. [Not an intervention
 of interest]
- 128. Broder I, Tarlo SM, Davies GM, et al.
 Safety and efficacy of long-term treatment
 with inhaled beclomethasone dipropionate in
 steroid-dependent asthma. CMAJ. 1987 Jan
 15;136(2):129-35. PMID: 3098400.
 [Excluded study design]

- 129. Brodlie M, Gupta A, Rodriguez-Martinez CE, et al. Leukotriene receptor antagonists as maintenance or intermittent treatment in pre-school children with episodic viral wheeze. Paediatr Respir Rev. 2016 2016 Jan;17:57-9. [Not a human study]
- 130. Bruce SA, Scherer YK. Maintenance and symptom relief with budesonide plus formoterol reduced severe asthma exacerbations. Evid Based Nurs. 2005;8:78. DOI: 10.1136/ebn.8.3.78. [Not a human study]
- 131. Bruggenjurgen B, Selim D, Kardos P, et al. Economic assessment of adjustable maintenance treatment with budesonide/formoterol in a single inhaler versus fixed treatment in asthma. Pharmacoeconomics. 2005;23(7):723-31. PMID: 15987228. [Excluded study design]
- 132. Budesonide hydrofluoroalkane inhalation Chiesi. Drugs R D. 2003;4(1):37-8. [Not a human study]
- 133. Budesonide turbuhaler for asthma. Med Lett Drugs Ther. 1998 Jan 16;40(1018):15-6. PMID: 9457158. [Not a human study]
- 134. Budesonide/formoterol (symbicort) for asthma. Med Lett Drugs Ther. 2008 Feb;50(1279):9-11. [Not a human study]
- 135. Budesonide/formoterol improves asthma control. Can Respir J. 2001. 8:5;357-74. [Irretrievable]
- 136. Buhl R, Creemers JP, Vondra V, et al. Once daily symbicort (budesonide/eformoterol in a single inhaler) is effective in moderate-persistent asthma. Thorax. 2011;56;Suppl 3:iii62. [Not an intervention of interest]
- 137. Buhl R, Creemers JP, Vondra V, et al. Once-daily budesonide/formoterol via a single inhaler is effective in mild-to-moderate persistent asthma. Eur Respir J. 2001;18;Suppl 33:21s. [Not an intervention of interest]

- 138. Buhl R, Haughney J, van Schayck OCP, et al. Switching asthma patients using high-dose inhaled steroids to budesonide/formoterol maintenance and reliever therapy [Abstract]. European Respiratory Society Annual Congress; 2010 Sep 18-22; Barcelona, Spain. P4565. [Not an intervention of interest]
- 139. Buhl R, Kardos P, Richter K, et al. The effect of adjustable dosing with budesonide/formoterol on health-related quality of life and asthma control compared with fixed dosing. Curr Med Res Opin. 2004 Aug;20(8):1209-20. PMID: 15324523. [Not an intervention of interest]
- 140. Buhl R, Soler M, Matz J, et al.
 Omalizumab provides long-term control in patients with moderate-to-severe allergic asthma. Eur Respir J. 2002 Jul;20(1):73-8.
 PMID: 12166585. [Not an intervention of interest]
- 141. Buhl R, Van Schayck O, Aubier M, et al. Impact of age, age at diagnosis and duration of asthma on the risk of exacerbations in the EuroSMART study. Eur Respir J. 2012 Sep;P2163. Embase 71926516. [Not an intervention of interest]
- 142. Buhl R, Vinkler I, Magyar P, et al.
 Comparable efficacy of ciclesonide once daily versus fluticasone propionate twice daily in asthma. Pulm Pharmacol Ther.
 2006;19(6):404-12. PMID: 16310388. [Not an intervention of interest]
- 143. Buhl R, Zetterstrom O, Mellem H, et al. Improved asthma control with budesonide/formoterol via a single inhaler compared with budesonide alone, in moderate persistent asthma. Eur Respir J. 2001;18;Suppl 33:48s. [Not an intervention of interest]
- 144. Bukstein DA, Luskin AT, Bernstein A. "Real-world" effectiveness of daily controller medicine in children with mild persistent asthma. Ann Allergy Asthma Immunol. 2003 May;90(5):543-9. PMID: 12775136. [Excluded study design]

- 145. Bulac S, Cimrin A, Ellidokuz H. The effect of beclometasone dipropionate/formoterol extra-fine fixed combination on the peripheral airway inflammation in controlled asthma. J Aerosol Med Pulm Drug Deliv. 2015 Apr;28(2):82-7. PMID: 25050594. [Not an intervention of interest]
- 146. Bulow KB, Kalen N. Local and systemic effects of beclomethasone inhalation in steroid-dependent asthmatic patients. Curr Ther Res Clin Exp. 1974 Oct;16(10):1110-8. PMID: 4215621. [Excluded study design]
- 147. Bulow KB, Kalen N. Local and systemic effects of beclomethasone inhalation in steroid-dependent asthmatic patients. Curr Ther Res Clin Exp. 1974 Oct;16(10):1110-8. PMID: 4215621. [Duplicate]
- 148. Bush A, Grigg J, Saglani S. Managing wheeze in preschool children. BMJ (Online). 2014 Feb;348:Article Number g15. [Not a human study]
- 149. Bush A. Inhaled corticosteroid and children's growth. Arch Dis Child. 2014 Mar;99(3):191-2. PMID: 24162008. [Not a human study]
- 150. Bush A. Practice imperfect--treatment for wheezing in preschoolers. N Engl J Med. 2009 Jan 22;360(4):409-10. PMID: 19164192. [Not a human study]
- 151. Busse W, Bleecker ER, Bateman ED, et al. Fluticasone furoate (FF), an inhaled corticosteroid (ICS), demonstrates efficacy in asthma patients symptomatic on moderate doses of ICS therapy [Abstract]. European Respiratory Society Annual Congress; 2010 Sep 18-22; Barcelona, Spain. P1168. [Not an intervention of interest]
- 152. Busse W, Kaliner M, Bernstein D, et al. The novel inhaled corticosteroid ciclesonide is effacious and has a favourable safety profile in adults and adolescents with severe persistent asthma. J Allergy Clin Immunol. 2005;115;Suppl 2:S213. [Not an intervention of interest]

- 153. Busse WW, Shah SR, Somerville L, et al. Comparison of adjustable- and fixed-dose budesonide/formoterol pressurized metered-dose inhaler and fixed-dose fluticasone propionate/salmeterol dry powder inhaler in asthma patients. J Allergy Clin Immunol. 2008 Jun;121(6):1407-14. PMID: 18455221. [Not an intervention of interest]
- 154. Busse WW, Shah SR, Somerville L, et al. Comparison of asthma exacerbations and lung function with adjustable-dose budesonide/formoterol pressurized metered-dose inhaler (BUD/FM pMDI), fixed dose BUD/FM pMDI and fixed-dose fluticasone/salmeterol dry powder inhaler (FP/SM DPI)[Abstract]. American Thoracic Society International Conference; 2007 May 18-23; San Francisco, California. K2p. [Irretrievable]
- 155. Busse WW, Uryniak T. Efficacy of inhaled budesonide (Pulicort Tubuhaler(R)) in recent-onset moderate to severe persistent asthma. J Allergy Clin Immunol. 2004;113;Suppl 2:S119. [Not an intervention of interest]
- 156. Caballero-Fonseca F, Sanchez-Borges M. Adrenal suppression related to inhaled corticosteroids revisited. Chest. 2002 Sep;122(3):1103-4. PMID: 12226066. [Not a human study]
- 157. Calhoun WJ. Physician-, biomarker-, and symptombased djustment of inhaled corticosteroids for asthma had similar effects. Ann Intern Med. 2013;158(2):JC6. [Not a human study]
- 158. Callén Blecua M, Aizpurua Galdeano P, Ozcoidi Erro I, et al. Inhaled corticosteroids and wheezing post-bronchiolitis. An Esp Pediatr. 2000;52(4):351-5. [Not an intervention of interest]
- 159. Campusano L, Pastenes M, Fontecilla C, et al. Response to budesonide among atopic and non-atopic infants/preschoolers with recurrent wheezing. Allergol Immunopathol (Madr). 2010 Jan-Feb;38(1):31-6. PMID: 19875223. [Not an intervention of interest]

- 160. Canonica GW, Castellani P, Cazzola M, et al. Adjustable maintenance dosing with budesonide/formoterol in a single inhaler provides effective asthma symptom control at a lower dose than fixed maintenance dosing. Pulm Pharmacol Ther. 2004;17(4):239-47. PMID: 15219269. [Not an intervention of interest]
- 161. Cao EH, Tong MR, Tang XM, et al. Effects of inhaled budesonide on asthmatic patients. Journal Nanjin University. 1998;34(2):223-6. [No English language abstract]
- 162. Caramez MPR, Grunauer MA, Boueri FMV, et al. Effect of continuous inhaled beclomethasone for asthmatic pregnant patients on asthma control and perinatal outcome: a randomized controlled study. Am J Respir Crit Care Med. 1998;157;Suppl 3:A621. [Not an intervention of interest]
- 163. Carlsen K-, Gerritsen J. Inhaled steroids in children: adrenal suppression and growth impairment. Eur Respir J. 2002;19(6):985-8. [Not a human study]
- 164. Carra S, Gagliardi L, Zanconato S, et al. Budesonide but not nedocromil sodium reduces exhaled nitric oxide levels in asthmatic children. Respir Med. 2001 Sep;95(9):734-9. PMID: 11575894. [Not an intervention of interest]
- 165. Casale TB, Nelson HS, Corren J, et al. Long-term safety of flunisolide hydrofluoroalkane metered-dose inhaler in adults and adolescents with asthma. Clin Drug Invest. 2001;21(11):755-64. [Not an intervention of interest]
- 166. Castiller F, Trow TK. "Fine tuning" the use of inhaled steroids. Clin Pulm Med. 2005 Sep;12(5):324-6. [Not a human study]
- 167. Castro HP, Espino SR, Rodríguez Orozco AR. Budesonide (inhaled steroid) to children to control intermittent asthma. Rev Alerg Mex. 2009;56(1):9-12. [Not an intervention of interest]
- 168. Cates C. Chronic asthma. BMJ. 2001 Oct 27;323(7319):976-9. PMID: 11679388. [Not a human study]

- 169. Cazzola M, Curradi G. How to prevent relapse after acute exacerbation of asthma? Pol Arch Med Wewn. 2007;117(11-12):487-90. [Not a human study]
- 170. Cazzola M, Matera MG. Lung blood flow must be considered when prescribing a longacting beta2-agonist/inhaled corticosteroid combination. Chest. 2012 May;141(5):1134-6. PMID: 22553257. [Not a human study]
- 171. Chalmers GW, MacLeod KJ, Little SA, et al. Cigarette smoking impairs the efficacy of inhaled corticosteroid in mild asthma.

 Annual Thoracic Society 97th International conference; 2001 May 18-23; San Francisco, CA. [Not an intervention of interest]
- 172. Chandra S. Health outcomes, education, healthcare delivery and quality-3057: randomized, double blind comparative study to assess safety, efficacy with mometasone & formoterol versus fluticasone & formoterol dry powder inhaler (DPI) in the treatment of mild to moderate persistent asthma. World Allergy Organ J. 2013;6;Suppl 2:P255. Embase 71252441. [Not an intervention of interest]
- 173. Chandra S. Randomized, double blind comparative study to assess safety, efficacy with mometasone & formoterol versus fluticasone & formoterol dry powder inhaler (DPI) in the treatment of mild to moderate persistent asthma. World Allergy Organ J. 2013;6;Suppl 2:P225. [Not an intervention of interest]
- 174. Chanez P, Karlstrom R, Godard P. High or standard initial dose of budesonide to control mild-to-moderate asthma?. Eur Respir J. 2001 May;17(5):856-62. PMID: 11488316. [Not an intervention of interest]
- 175. Chao L-, Lin Y-, Wu W-, et al. Efficacy of nebulized budesonide in hospitalized infants and children younger than 24 months with bronchiolitis. Acta Paediatr Taiwan. 2003;44(6):332-5. [Not in the target population]
- 176. Chapman KR, McIvor A. Asthma that is unresponsive to usual care. CMAJ. 2010;182(1):45-52. [Not a human study]

- 177. Chapman KR. SMART isn't. J Allergy Clin Immunol. 2010 Mar;125(3):609-10. PMID: 20226296. [Not a human study]
- 178. Chatzimichail A, Pietrobelli A, Boner AL. Growth and adrenal suppression due to moderate- to high-dose inhaled fluticasone. J Paediatr Child Health. 2002 Dec;38(6):623. PMID: 12410884. [Excluded study design]
- 179. Chavasse R, Bastian Lee Y, et al. Wheezing in infants with an atopic tendency responds to inhaled fluticasone. Thorax. 1999;54;Suppl 3:A7 S27. [Not an intervention of interest]
- 180. Chavasse R, Bastian Lee Y, Richter H, et al. Wheezing in infants responds to inhaled fluticasone. Am J Respir Crit Care Med. 2000;161;Suppl 3:A38. [Irretrievable]
- 181. Chay OM, Goh A, Lim WH, et al. Effects of inhaled corticosteroid on bone turnover in children with bronchial asthma.

 Respirology. 1999 Mar;4(1):63-7. PMID: 10339732. [Not an intervention of interest]
- 182. Chen XH, Xia Y, Dong CC, et al.

 Therapeutic effect of salmeterol xinafoate and fluticasone propionate powder for inhalation in treatment of 50 moderate and severe asthma children. Zhongguo Xinyao yu Linchuang Zazhi. 2004;23(9):575-8. [Not an intervention of interest]
- 183. Cheng QJ, Huang SG, Chen YZ, et al. Formoterol as reliever medication in asthma: A post-hoc analysis of the subgroup of the RELIEF study in East Asia. BMC pulmonary medicine. 2016;Jan;16(1).8. PMID: 26758377. [duplicate]
- 184. Cheng QJ, Huang SG, Chen YZ, et al. Formoterol as reliever medication in asthma: a post-hoc analysis of the subgroup of the RELIEF study in East Asia. BMC Pulmonary Medicine. 2016;Jan;16:8. PMID: 26758377 [not an intervention of interest]

- 185. Chervinsky P, Baker J, Bensch G, et al. Improvement in health-related quality of life (HRQL) after use of budesonide (BUD) and formoterol (FM) in one pressurized metered-dose inhaler (pMDI) in adults with moderate to severe asthma [Abstract]. American Thoracic Society International Conference; 2007 May 18-23; San Francisco, California. 617p. [Irretrievable]
- 186. Chetty A, Roy S, Sunderam KR.
 Beclomethasone dipropionate aerosol
 therapy in childhood asthma. Indian Pediatr.
 1987 Jul;24(7):537-41. PMID: 3692582.
 [Excluded study design]
- 187. Chhabra SK. A comparison of inhaled salbutamol with a combination of salbutamol and beclomethasone dipropionate in moderately severe asthma. Indian J Chest Dis Allied Sci. 1994;36(3):119-24. [Not an intervention of interest]
- 188. Chipps B. Effect of inhaled glucocorticoids in childhood on adult height. Pediatrics. 2013;132;Suppl 1:S45. DOI: 10.1542/peds.2013-2294WWW. [Not a human study]
- 189. Chipps BE, Bacharier LB, Harder JM. Phenotypic expressions of childhood wheezing and asthma: implications for therapy. J Pediatr. 2011;158(6):878-884.e1. [Not a human study]
- 190. Chkhaidze I, Kherkheulidze M, Kavlashvili N, et al. Non-viral wheezing in preschool children: The effect of inhaled fluticasone on symptoms and lung function. Georgian Med News. 2006PMID: 16575135. [Not an intervention of interest]
- 191. Chlumský J, Striz I, Terl M, et al. Strategy aimed at reduction of sputum eosinophils decreases exacerbation rate in patients with asthma. J Int Med Res. 2006;34(2):129-39. [Not an intervention of interest]
- 192. Chong SL, Hsu AA. Not all that wheezes is asthma. Ann Acad Med Singapore. 2014 Oct;43(10):519-20. [Excluded study design]

- 193. Chowdhury BA. Ciclesonide inhalation aerosol for persistent asthma. J Allergy Clin Immunol. 2006 May;117(5):1194-5. PMID: 16675356. [Not a human study]
- 194. Chronic asthma. MeReC Brief. 2002;18:1-5. [Irretrievable]
- 195. Chuchalin AG, Molostova TN. Efficacy of budesonide in bronchial asthma patients assessed by a double-blind crossover placebo-controlled method. Klin Farmakologiia Terapiia. 1999: 23-6p. [Irretrievable]
- 196. Ciclesonide (alvesco)-a new inhaled corticosteroid for asthma. Med Lett Drugs Ther. 2008 Sep 22;50(1295):75-6. PMID: 18800024. [Not a human study]
- 197. Ciclesonide. Aust Prescr. 2005 Aug;28(4):106. [Not a human study]
- 198. Ciclesonide. Drugs R D. 2002;3(6):407-10. [Not a human study]
- 199. Ciclesonide: Novel asthma treatment. WHO Drug Inf. 2004;18(3):225. [Not a human study]
- 200. Cimrin AH, Sevinc C, Ellidokuz H, et al. Is withdrawal of inhaled corticosteroid therapy possible in stable mild-moderate persistent bronchial asthma cases? A randomised controlled study. Eur Respir J. 2000;16;Suppl 31:93s. [Irretrievable]
- 201. Cisneros C, Quiralte J, Capel M, et al. Cost-effectiveness analysis of budesonide/formoterol in the maintenance treatment and as-needed (Symbicort SMART) versus salmeterol/fluticasone plus terbutaline in the treatment of persistent asthma in Spain. Pharmacoeconomics. 2010;7(4):163-75. [Excluded study design]
- 202. Clark TJ. Inhaled steroid aerosols and alternate-day prednisone. Lancet. 1979 May 5;1(8123):970-1. PMID: 87630. [Not a human study]
- 203. Clarke GW, Greenaway SD, James WY, et al. The acute effect of inhaled steroids on airway mucosal flow in asthma [Abstract]. American Thoracic Society International Conference; 2007 May 18-23; San Francisco, California. B60p. [Irretrievable]

- 204. Clavenna A, Sequi M, Cartabia M, et al.
 Effectiveness of nebulized beclomethasone in preventing viral wheezing: An RCT.
 Pediatrics. 2014 Mar;133(3):e505-12.
 PMID: 24534400. [Not in the target population]
- 205. Cochran D. Diagnosing and treating chesty infants. A short trial of inhaled corticosteroid is probably the best approach. BMJ. 1998 May 23;316(7144):1546-7. PMID: 9596586. [Not a human study]
- 206. Cockcroft DW, Davis BE, Swystun VA. Salmeterol, inhaled corticosteroids, and tolerance to allergen bronchoprotection. Chest. 1999 Nov;116(5):1497-8. PMID: 10559129. [Not a human study]
- 207. Combined oral, inhaled steroids prevent relapse in acute asthma. Healthc Demand Dis Manag. 1999 Aug;5(8):123-5. PMID: 10557952. [Not a human study]
- 208. Connett G, Lenney W. Prevention of viral induced asthma attacks using inhaled budesonide. Arch Dis Child. 1993
 Jan;68(1):85-7. PMID: 8435016. [No outcomes of interest]
- 209. Convery RP, Leitch DN, Bromly C, et al. Effect of inhaled fluticasone propionate on airway responsiveness in treatment-naive individuals--a lesser benefit in females. Eur Respir J. 2000 Jan;15(1):19-24. PMID: 10678615. [Not in the target population]
- 210. Corren J, Korenblat PE, Miller CJ, et al. Comparative assessment of asthma control with budesonide and formoterol in one pressurized metered dose inhaled (pMDI) versus budesonide and formoterol in individual inhalers and placebo. J Allergy Clin Immunol. 2007;119;Suppl 1:S248. [Not an intervention of interest]
- 211. Cortese S, Gatta A, Della Valle L, et al. Fluticasone/formoterol association favors long-lasting decrease in bronchial reactivity to methacholine and weekly PEF variability. International Journal of Immunopathology & Pharmacology. 2016;Dec;29(4):769-774. PMID: 27272161 [no outcomes of interest]

- 212. Corticosteroid therapy for wheezy infants. Indian Pediatr. 2006 Jul;43(7):662. [Not a human study]
- 213. Cote J, Cartier A, Robichaud P, et al. Influence on asthma morbidity of asthma education programs based on self-management plans following treatment optimization. Am J Respir Crit Care Med. 1997 May;155(5):1509-14. PMID: 9154850. [Not an intervention of interest]
- 214. Crim C, Scott CA, Maden CJ, et al.
 Fluticasone propionate administered via
 metered-dose inhaler with valved holding
 chamber and attached face-mask is effective
 in improving asthma control by producing at
 least a 2-step improvement in asthma
 staging in preschool age children with
 asthma. J Allergy Clin Immunol.
 2004;113;Suppl 2:S118. [Not an
 intervention of interest]
- 215. Crimi N, Polosa R, Prosperini G, et al. Inhaled beclomethasone attenuates bronchial reactivity to neurokinin a (NKA) and histamine in asthma. Eur Respir J. 1996;9;Suppl 23:33s. [Not an intervention of interest]
- 216. Csonka P, Mertsola J, Klaukka T, et al. Corticosteroid therapy and need for hospital care in wheezing preschool children. Eur J Clin Pharmacol. 2000 Nov;56(8):591-6. PMID: 11151750. [Not in the target population]
- 217. Currie GP, Douglas JG, Heaney LG. Difficult to treat asthma in adults. BMJ (Online). 2009 Mar;338(7694):593-7. [Not a human study]
- 218. Currie GP, Small I, Douglas G. Long acting β2 agonists in adult asthma. BMJ (Online). 2013 Oct;347(7927):Article Number f4662. [Not a human study]
- 219. Currie GP. Why SMART about second-line treatment when first-line treatment is being ignored?. Chest. 2006 Sep;130(3):929. PMID: 16963701. [Not a human study]
- 220. Curtiss FR. Asthma disease management evidence-based medicine must be dynamic. J Managed Care Pharm. 2006;12(1):80-2. [Not a human study]

- 221. Curtiss FR. More evolution of the evidence in asthma disease management--SMART versus GOAL clinical trials debate the costbenefit of LABA while the value of leukotriene modifiers, particularly montelukast, is uncertain. J Manage Care Pharm. 2006 May;12(4):343-6. PMID: 16792441. [Not a human study]
- 222. Dahl R, Johansson SA. Effect on lung function of budesonide by inhalation, terbutaline s.c. and placebo given simultaneously or as single treatments. Eur J Respir Dis Suppl. 1982;122:132-7. PMID: 6958477. [Not an intervention of interest]
- 223. Dahl R, Pedersen B, Hagglof B. Nocturnal asthma: effect of treatment with oral sustained-release terbutaline, inhaled budesonide and the two in combination. Eur Respir J. 1988;1;Suppl 2:339s. [Not an intervention of interest]
- 224. Dal Negro R, Micheletto C, Ciani F, et al. Efficacy and safety of inhaled beclomethasone dipropionate dry powder in the treatment of chronic asthma: a controlled study vs. budesonide. Eur Respir J. 1998;12;Suppl 28:351S. [Not an intervention of interest]
- 225. Danov Z, Guilbert T. Regular use of inhaled corticosteroids controls symptoms of mild persistent asthma, but with growth effect. J Pediatr. 2009 Jan;154(1):150. [Not a human study]
- 226. Daugbjerg P, Brenoe E, Forchhammer H, et al. A comparison between nebulized terbutaline, nebulized corticosteroid and systemic corticosteroid for acute wheezing in children up to 18 months of age. Acta Paediatr. 1993 Jun-Jul;82(6-7):547-51. PMID: 8338988. [Not in the target population]
- 227. Davies G, Thomas P, Broder I, et al. Steroid-dependent asthma treated with inhaled beclomethasone dipropionate. A long-term study. Ann Intern Med. 1977 May;86(5):549-53. PMID: 322562. [Not an intervention of interest]

- 228. De Benedictis FM, Boner A, Cavagni G, et al. Treating asthma in children with beclomethasone dipropionate: Pulvinal versus diskhaler. J Aerosol Med. 2000;13(1):35-41. PMID: 10947322. [Not an intervention of interest]
- 229. De Benedictis FM, Del Giudice MM, Vetrella M, et al. Nebulized fluticasone propionate vs. budesonide as adjunctive treatment in children with asthma exacerbation. J Asthma. 2005

 Jun;42(5):331-6. PMID: 16116682. [Not an intervention of interest]
- 230. de Blic J, Delacourt C, Le Bourgeois M, et al. Efficacy of nebulized budesonide in treatment of severe infantile asthma: A double-blind study. J Allergy Clin Immunol. 1996 Jul;98(1):14-20. PMID: 8765813. [Not an intervention of interest]
- 231. de Jongste JC, Carraro S, Hop WC, et al. Daily telemonitoring of exhaled nitric oxide and symptoms in the treatment of childhood asthma. Am J Respir Crit Care Med. 2009 Jan 15;179(2):93-7. PMID: 18931330. [Not an intervention of interest]
- 232. De Marzo N, Maestrelli P, Saetta M, et al. Management of occupational asthma induced by toluene diisocyanate (TDI) effect of removal from exposure and long term treatment with inhaled beclomethasone dipropionate (BPD). Eur Respir J. 1992;5;Suppl 15:111s. [Not an intervention of interest]
- 233. De Vries MP, Van den Bemt L, Aretz K, et al. House dust mite allergen avoidance and self-management in allergic patients with asthma: randomised controlled trial. Br J Gen Pract. 2007;57(536):184-90. [Not an intervention of interest]
- 234. de Vries MP, van den Bemt L, Thoonen BPA, et al. Relationship between house dust mite (HDM) allergen exposure level and inhaled corticosteroid dosage in HDM-sensitive asthma patients on a self management program. Prim Care Respir J. 2006 Apr;15(2):110-5. PMID: 16701770. [Not an intervention of interest]

- 235. Decimo F, Maiello N, Miraglia Del Giudice M, et al. High-dose inhaled flunisolide versus budesonide in the treatment of acute asthma exacerbations in preschool-age children. Int J Immunopathol Pharmacol. 2009 Apr-Jun;22(2):363-70. PMID: 19505390. [Not in the target population]
- 236. Del Donno M, Foresi A, Chetta A, et al. Effect of six week treatment with low dose of inhaled fluticasone propionate on airway inflammation in mild asthma. Eur Respir J. 1995;8;Suppl 19:302S. [Not an intervention of interest]
- 237. del-Rio-Navarro BE, Corona-Hernandez L, Fragoso-Rios R, et al. Effect of salmeterol and salmeterol plus beclomethasone on saliva flow and IgA in patients with moderate-persistent chronic asthma. Ann Allergy Asthma Immunol. 2001
 Nov;87(5):420-3. PMID: 11730186. [Not an intervention of interest]
- 238. Demay MCR, Magny JP, Idrès N, et al. Use of the low-dose corticotropin stimulation test for the monitoring of children with asthma treated with inhaled corticosteroids. Horm Res. 2006;66(2):51-60. [Not an intervention of interest]
- 239. Derom E, Louis R, Tiesler C, et al.
 Comparison of systemic and clinical effects
 of inhaled ciclesonide and fluticasone
 propionate in moderate to severe asthma
 [Abstract]. American Thoracic Society
 International Conference; 2008 May 16-21;
 Toronto, Canada. A50p. [Not an
 intervention of interest]
- 240. Deslandes B, Lim J, Staudinger H. Efficacy and safety of azmacort MDI and flovent diskhaler. J Allergy Clin Immunol. 1998 Jul;102(1):154-5. PMID: 9679864. [Not a human study]
- 241. Devoy M. Use of inhaled corticosteroids in children. Arch Dis Child. 2003
 May;88(5):461. PMID: 12716732. [Not a human study]

- 242. Di Franco A, Bacci E, Bartoli ML, et al. Inhaled fluticasone propionate is effective as well as oral prednisone in reducing sputum eosinophilia during exacerbations of asthma which do not require hospitalization. Pulm Pharmacol Ther. 2006;19(5):353-60. PMID: 16289980. [Not an intervention of interest]
- 243. DiSantostefano RL, Boudiaf N, Stempel DA, Barnes NC, Greening AP. The frequency of, and adherence to, single maintenance and reliever therapy instructions in asthma: a descriptive analysis. NPJ Primary Care Respiratory Medicine. 2016;July;26:16038. PMID: 27442488 [no outcomes of interest]
- 244. Dixit R, Dixit K, Sharma S, et al. Adrenal suppression and its pattern with high dose inhaled budesonide and fluticasone propionate in adult asthmatic patients. Chest. 2007;132(4):505a. [Not an intervention of interest]
- 245. Djordjevic DD, Stankovic IJ, Rancic MH, et al. Inhaled corticosteroids in treatment of patients with intermittent bronchial asthmla, yes or no? Eur Respir J. 2005;26;Suppl 49: Abstract No 3288. [Not in the target population]
- 246. Dogra P, Kajal NC, Bhushan B, et al. To study the effect of inhaled fluticasone verses montelukast as treatment of persistent asthma. Chest. 2006;130(4):109s. [Not an intervention of interest]
- 247. Dombrowski MP, Schatz M, Wise R, et al. Inhaled beclomethasone and oral theophylline were similarly effective in pregnant women with moderate asthma. Evid -based Obstet Gynecol. 2005
 Mar;7(1):11-2. [Not a human study]
- 248. Domingo C. Ultra-LAMA, ultra-LABA, ultra-inhaled steroids? the future has landed. Arch Bronconeumol. 2013 Apr;49(4):131-4. PMID: 23415574. [Not a human study]

- 249. Dorinsky P, Yancey S, Reilly D, et al. Long-term effectiveness of the fluticasone propionate/salmeterol (FSC) 100/50mcg combination product as an inhaled corticosteroid sparing. J Allergy Clin Immunol. 2003;11(2):S125. [Not an intervention of interest]
- 250. Dorow P, Thalhofer S. Inhaled beclomethasone (BDP) versus oral theophylline: a 12 month study in patients with bronchial asthma. Eur Respir J. 1990;3;Suppl 10:91S. [Not an intervention of interest]
- 251. Dos Santos LZM, Soares CG, Filho WR. Oral montelukast versus inhaled beclomethasone in the prophylactic treatment of post acute viral bronchiolitis wheezing. World Allergy Organ J. 2014;8;Suppl 1:A128. DOI: 10.1186/1939-4551-8-S1-A128. [Not an intervention of interest]
- 252. Dose-effect of inhaled corticosteroid on growth rates of children. Drug Ther Bull. 2014;52(10):111. [Not a human study]
- 253. Doubling the dose of inhaeled corticosteroid ineffective when asthma control is detiorating. AJP.2004;85(1011):457. [Not a human study]
- 254. Drake AJ, Howells RJ, Shield JPH, et al. Symptomatic adrenal insufficiency presenting with hypoglycaemia in children with asthma receiving high dose inhaled fluticasone propionate. BMJ. 2002 May 4;324(7345):1081-2. PMID: 11991916. [Excluded study design]
- 255. Dreyer EB. Inhaled steroid use and glaucoma. N Engl J Med. 1993 Dec 9;329(24):1822. PMID: 8232507. [Excluded study design].
- 256. Drollman A, Langdon C, Engelst A, et al. Ciclesonide is effective in the treatment of bronchial asthma. Eur Respir J. 2001;18;Suppl 33:95s. [Not an intervention of interest]

- 257. du Toit JI, Salome CM, Woolcock AJ. Short term effects of inhaled corticosteroids on bronchial hyperresponsiveness. Aust NZ J Med Suppl. 1986;16(4):627. [Not an intervention of interest]
- 258. Dubus J, Mely L, Huiart L, et al. Cough after inhalation of corticosteroids delivered from spacer devices in children with asthma. Fundam Clin Pharmacol. 2003
 Oct;17(5):627-31. PMID: 14703724.
 [Excluded study design]
- 259. Ducharme FM. Continuous versus intermittent inhaled corticosteroids for mild persistent asthma in children: Not too much, not too little. Thorax. 2012 Feb;67(2):102-5. [Not a human study]
- 260. Dukes EM, Kemp J, Tinkelman D, et al. The impact of budesonide inhalation suspension BIS on the health status of young children with asthma. Ann Allergy Asthma Immunol. 1999:82;124. [Irretrievable]
- 261. Duong-Quy S, Hua-Huy T, Doan-Quynh N, et al. A study of exhaled NO (FENO) measurement used to determine asthma control, dose of inhaled corticosteroid and cost in a developing country. Eur Respir J. 2015;46:PA5013. DOI: 10.1183/13993003.congress2015.PA5013. [Not an intervention of interest]
- 262. Durmaz C, Asilsoy S, Usta Guc B. Efficacy of nebulised budesonide in infants with viral wheezing. Allergy. 2011;6;Suppl 94:563-4. DOI: 10.1111/j.1398-9995.2011.02608.x. [Abstract without full-text]
- 263. Durzo A, Hebrt JR, Kunkel G, et al.

 Mometasone furoate (MF) therapy improves plmonary function in patients previously maintained on high doses of inhaled corticosteroids (ICS). Eur Respir J. 2000;16;Suppl 31:338s. [Irretrievable]
- 264. Dutu S, Stoicescu P, Bistriceanu G, et al. Clinical management of bronchial asthma with inhaled high-dose beclomethasone dipropionate (beclomet 250--orion). Pneumoftiziologia. 1991 Jul-Sep;40(3):46-7. PMID: 1841740. [Excluded study design]

- 265. Dykewicz MS. Asthma treatment with inhaled corticosteroids versus antileukotrienes: What exhaled nitric oxide studies do and do not tell us. Ann Allergy Asthma Immunol. 2001 Oct;87(4):257-60. PMID: 11686416. [Not a human study]
- 266. Edelman JM, Ghannam A, Bird S et al.
 Onset of action of montelukast and inhaled beclomethasone in achieving asthma control. Am J Respir Crit Care Med. 2000;161;Suppl 3:A202. [Irretrievable]
- 267. Edelman JM. Rescue-free days in patients with mild persistent asthma receiving montelukast sodium or an inhaled corticosteroid [abstract]. European Respiratory Society Annual Congress; 2002; Stockholm, Sweden. 771. [Irretrievable]
- 268. Edin HM, Payne E, Herrle MR, et al. Salmeterol/Fluticasone Propionate combination via HFA MDI improves quality of life in asthma patients. J Allergy Clin Immunol. 2001;107(2):S246. [Not an intervention of interest]
- 269. Edmonds ML, Rowe BH. Treatment with inhaled flunisolide. Chest. 2004
 May;125(5):1961-2. PMID: 15136418. [Not a human study]
- 270. Edsbacker S, Thorsson L. Fluticasone and asthma. Lancet. 2001 Mar 10;357(9258):804. PMID: 11253999. [Not a human study]
- 271. Eigen H. Differential diagnosis and treatment of wheezing and asthma in young children. Clin Pediatr. 2008 Oct;47(8):735-43. [Not a human study]
- 272. Ekroos H, Lindqvist A, Saarinen A, et al. Significant association with the decrease of bronchial hyperresponsiveness and the decrease of exhaled nitric oxide after starting inhaled fluticasone in mild asthma. European Respiratory Society; 1999 Oct 9-13; Madrid, Spain. 1213p. [Irretrievable]

- 273. Eliraz A, Fritscher CC, Perez CMR, et al. Budesonide and formoterol in a single inhaler quickly gains asthma control compared with fluticasone propionate in mild asthma. Eur Respir J. 2001;18;Suppl 33:48s. [Not an intervention of interest]
- 274. Emin O, Fatih M, Mustafa O, et al. Evaluation impact of long-term usage of inhaled fluticasone propionate on ocular functions in children with asthma. Steroids. 2011 May;76(6):548-52. PMID: 21335020. [Excluded study design]
- 275. Ermers MJJ, Rovers MM, van Woensel JB, et al. The effect of high dose inhaled corticosteroids on wheeze in infants after respiratory syncytial virus infection:
 Randomised double blind placebo controlled trial. BMJ. 2009;338:b897. PMID: 19336497. [Not in the target population]
- 276. Estelle F, Simons R. The benefits of long-term inhaled glucocorticosteroid treatment in children with asthma outweigh the risks. Pediatr Res. 2001;49(3):315-6. [Not a human study]
- 277. Fabbri LM. Does mild persistent asthma require regular treatment?. N Engl J Med. 2005 Apr 14;352(15):1589-91. PMID: 15829540. [Not a human study]
- 278. Farah CS, King GG, Brown NJ, et al. Ventilation heterogeneity predicts asthma control in adults following inhaled corticosteroid dose titration. J Allergy Clin Immunol. 2012 Jul;130(1):61-8. PMID: 22460065. [Excluded study design]
- 279. FitzGerald JM, Boulet L, Follows RMA. The CONCEPT trial: A 1-year, multicenter, randomized,double-blind, double-dummy comparison of a stable dosing regimen of salmeterol/fluticasone propionate with an adjustable maintenance dosing regimen of formoterol/budesonide in adults with persistent asthma. Clin Ther. 2005

 Apr;27(4):393-406. PMID: 15922813. [Not an intervention of interest]

- 280. FitzGerald JM, Sears MR, Boulet L, et al. Adjustable maintenance dosing with budesonide/formoterol reduces asthma exacerbations compared with traditional fixed dosing: A five-month multicentre canadian study. Can Respir J. 2003 Nov-Dec;10(8):427-34. PMID: 14679407. [Not an intervention of interest]
- 281. FitzGerald JM, Shragge D, Haddon J, et al. A randomized, controlled trial of high dose, inhaled budesonide versus oral prednisone in patients discharged from the emergency department following an acute asthma exacerbation. Can Respir J. 2000 Jan-Feb;7(1):61-7. PMID: 10700672. [Not in the target population]
- 282. FitzGerald JM. Effect of inhaled formoterol and budesonide on exacerbations of asthma. N Engl J Med. 1998 Apr 9;338(15):1071-2. PMID: 9537879. [Not a human study]
- 283. Fitzpatrick AM, Jackson DJ, Mauger DT, Boehmer SJ. Individualized therapy for persistent asthma in young children. Journal of Allergy & Clinical Immunology. 2016;Dec 138(6):1608-1618.e12. PMID: 27777180 [no outcomes of interest]
- 284. Fleming L, Wilson N, Regamey N, et al. Use of sputum eosinophil counts to guide management in children with severe asthma. Thorax. 2012 Mar;67(3):193-8. PMID: 21825081. [Not an intervention of interest]
- 285. Fluticason furoate (arnuity ellipta) for asthma. Med Lett Drugs Ther. 2015 May 25;57(1469):76-9. PMID: 25989197. [Not a human study]
- 286. Fluticasone linked to adrenal crisis. Pharm J. 2002 2002/11;269(7226):770. [Not a human study]
- 287. Fluticasone/salmeterol: New indications not justified. Prescrire Int. 2008;17(98):229. [Not a human study]
- 288. Foresi A, Pelucchi A, Dorini S, et al. Effect of low and high dose inhaled fluticasone propionate fp in symptomatic asthma. Annual Thoracic Society 97th International Conference; 2001 May 18-23; San Francisco, CA. A519. [Not an intervention of interest]

- 289. Fox GF, Everard ML, Marsh MJ, et al. Randomised controlled trial of budesonide for the prevention of post-bronchiolitis wheezing. Arch Dis Child. 1999
 Apr;80(4):343-7. PMID: 10086941. [Not in the target population]
- 290. Francis RS, McEnery G. Disodium cromoglycate compared with beclomethasone dipropionate in juvenile asthma. Clin Allergy. 1984 Nov;14(6):537-40. PMID: 6439430. [Not an intervention of interest]
- 291. Francis RS, McEnery G. Disodium cromoglycate compared with beclomethasone dipropionate in juvenile asthma. Clin Allergy. 1984;14(6):537-40. [Not an intervention of interest]
- 292. Freed-Martens R, Anderson SD, Brannan JD. Effect of treatment on recovery of FEV1 to baseline after a mannitol challenge: a phase 3 study. Respirology. 2005;10;Suppl;A1. [Not an intervention of interest]
- 293. Fritsch M, Uxa S, Horak F, et al. Exhaled nitric oxide in the management of childhood asthma: a prospective 6-months study. Pediatr Pulmonol. 2006 Sep;41(9):855-62. PMID: 16850457. [Not an intervention of interest]
- 294. Fukuoka J. Different responses of morning dipping and nocturnal dipping to inhaled and/or oral steroids in chronic asthmatics. Nihon Kyobu Shikkan Gakkai Zasshi. 1994 Aug;32(8):731-8. [Not an intervention of interest]
- 295. Gajanan SG. Inhaled corticosteroids in childhood bronchial asthma. Natl Med J India. 1993 Mar-Apr;6(2):76-7. PMID: 8477214. [Not a human study]
- 296. Galant S, Gode Sellers S, Kalberg C, et al. Low dose inhaled fluticasone propionate provides greater improvement in pulmonary function as compared to montelukast in patients with persistent asthma. J Allergy Clin Immunol. 2001;107(2):S106. [Not an intervention of interest]

- 297. Galant S, Miller CJ, Mezzanotte WS, et al. Efficacy of budesonide inhalation suspension (pulmicort respules) in children with asthma previously treated with inhaled corticosteroids or other daily medications. J Allergy Clin Immunol. 2002;109;Suppl 1:S241. [Not an intervention of interest]
- 298. Garay SM, Bensch GW, Lockey RF. Rapid reduction of nocturnal awakenings with inhaled mometasone furoate in adults with mild to moderate persistent asthma [Abstract]. American Thoracic Society International Conference; 2008 May 16-21; Toronto, Canada. A52p. [Not an intervention of interest]
- 299. Garrett J, Williams S, Wong C, et al.
 Treatment of acute asthmatic exacerbations with an increased dose of inhaled steroid.
 Arch Dis Child. 1998 Jul;79(1):12-7. PMID: 9771245. [No outcomes of interest]
- 300. Geddes DM. Inhaled budesonide for mild asthma. N Engl J Med. 1995 Mar 9;332(10):683-4. PMID: 7845439. [Not a human study]
- 301. Gelfand EW, Gallegos CM, Silveira LJ, et al. Effect of the Inhaled Corticosteroid Mometasone Furoate on Small Airway Patency in Patients with Asthma. J Allergy Clin Immunol. 2009;123;2 Suppl 1:S77. [Not an intervention of interest]
- 302. Gerald JK, Gerald LB, Chinchilli VM, et al. Adherence to rescue inhaled corticosteroid use during the TREXA trial. Am J Respir Crit Care Med. 2012;185;Meeting Abstracts:A2200. Embase 71986726. [Duplicate]
- 303. Ghosh CS, Joseraj R, Kumari A, et al. A randomized controlled clinical trial comparing the effects of inhaled budesonide vs. inhaled ipratropium bromide in patients with bronchiectasis. Indian J Allergy Asthma Immunol. 2002;16(1):67. [Not in the target population]

- 304. Giannini D, Di Franco A, Bacci E, et al.
 Different doses of inhaled fluticasone
 propionate fp in the management of
 moderate asthmatic subjects. Annual
 Thoracic Society 97th International
 Conference; 2001 May 13-23; San Francisco
 CA. A517. [Not an intervention of interest]
- 305. Glassroth J. Use of long-acting β-agonists and inhaled corticosteroids [7]. Ann Intern Med. 2006 Nov;145(9):710. [Not a human study]
- 306. Gleeson JG, Price JF. Controlled trial of budesonide given by the nebuhaler in preschool children with asthma. BMJ. 1988 Jul 16;297(6642):163-6. PMID: 3044506. [Not an intervention of interest]
- 307. Godfrey S, Avital A, Rosler A, et al. Nebulised budesonide in severe infantile asthma. Lancet. 1987 Oct 10;2(8563):851-2. PMID: 2889046. [Excluded study design]
- 308. Gogtay JA, Balki A, Dalal S, et al. Efficacy and tolerability of a new HFA-propelled fluticasone/formoterol combination inhaler compared to budesonide/formoterol combination in subjects with moderate to persistent asthma. Chest. 2010;138(4):161A. [Not an intervention of interest]
- 309. Gold DR, Fuhlbrigge AL. Inhaled corticosteroids for young children with wheezing. N Engl J Med. 2006 May 11;354(19):2058-60. PMID: 16687719. [Not a human study]
- 310. Gomez Tejada RA, Finkelstein CN, Gene RJ. Inhaled corticosteroids and asthma education. Medicina. 1998;58(6):692-8. [Not an intervention of interest]
- 311. Gonzalez PYE, Ruiz BA, Garate AJ, et al. A multicenter randomized, open, parallel group study comparing different treatments for hospitalized infants with acute wheezy bronchitis. An Esp Pediatr. 1994;41(5):315-9. [Not an intervention of interest]
- 312. Goodman DC. When an asthma drug has an inferiority complex: a noninferiority trial. Pediatrics. 2005 Aug;116(2):493-5. PMID: 16061609. [Not a human study]

- 313. Goossens LMA, Riemersma RA, Postma DS, et al. An economic evaluation of budesonide/formoterol for maintenance and reliever treatment in asthma in general practice. Adv Ther. 2009 Sep;26(9):872-85. PMID: 19768640. [Excluded study design]
- 314. Gotz M. The safety and efficacy of inhaled fluticasone propionate (FP) in childhood asthma. Eur Respir J. 1994;4;Suppl 14:S804. [Not an intervention of interest]
- 315. Gould W, Peterson EL, Karungi G, et al. Factors predicting inhaled corticosteroid responsiveness in african american patients with asthma. J Allergy Clin Immunol. 2010 Dec;126(6):1131-8. PMID: 20864153. [Excluded study design]
- 316. Gradman J, Wolthers OD. One year height growth in children with asthma treated with inhaled budesonide delivered from a new dry powder inhaler [Abstract]. European Respiratory Society Annual Congress; 2008 Oct 4-8; Berlin, Germany. P3942. [Not an intervention of interest]
- 317. Green RH, Brightling CE, McKenna S, et al. Asthma exacerbations and sputum eosinophil counts: A randomised controlled trial. Lancet. 2002 Nov 30;360(9347):1715-21. PMID: 12480423. [Not an intervention of interest]
- 318. Green RH, Pavord ID. Use of long-acting beta2 agonists in arginine-16 homozygous patients with asthma. Thorax. 2008 Jun;63(6):568-9. PMID: 18511645. [Not a human study]
- 319. Greenough A, Pool J, Gleeson JG, et al. Effect of budesonide on pulmonary hyperinflation in young asthmatic children. Thorax. 1988 Nov;43(11):937-8. PMID: 3065976. [Not an intervention of interest]
- 320. Greos L, Corren J, Ruiz N, et al. Efficacy of flunisolide HFA (aerospan) in adult and adolescent patients 12 years and older with asthma by baseline inhaled steroid. Ann Allergy Asthma Immunol. 2014;113;5 Suppl 1:A42. Embase 71679240. [Not an intervention of interest]

- 321. Gross G, Woodring A, Prillaman B, et al. Efficacy and safety of the salmeterol/fluticasone propionate (50/100 µg) dry powder combination inhaler in patients with asthma. Eur Respir J. 1998;12;Suppl:156s. [Not an intervention of interest]
- 322. Growth retardation in asthmatic children treated with inhaled beclomethasone dipropionate. Lancet. 1988 Feb 27;1(8583):475-6. PMID: 2893899. [Not a human study]
- 323. Grunberg K, Sharon RF, Sont JK, et al. Rhinovirus-induced airway inflammation in asthma: Effect of treatment with inhaled corticosteroids before and during experimental infection. Am J Respir Crit Care Med. 2001 Nov 15;164(10 Pt 1):1816-22. PMID: 11734429. [Not an intervention of interest]
- 324. Guleria R, Singh TR, Sinha S, et al. Effect of inhalation of Salbutamol, Beclomethasone dipropionate and Ipratropium bromide on mucociliary clearance in chronic stable bronchial asthma. Indian J Tuberc. 2004;51:54-7. [Not an intervention of interest]
- 325. Guo XD, Xu SL, Zhao P, et al. Efficiency of inhalation of budesonide aerosol in the treatment of asthma in infants and young children. Guangxi Medical Journal. 2002;24(1):14-6. [No English language abstract]
- 326. Haahtela T. Lung function decline in asthma and early intervention with inhaled corticosteroids. Chest. 2006
 Jun;129(6):1405-6. PMID: 16778255. [Not a human study]
- 327. Hacena M, Ingard A, Guenot A, et al. A prospective outcome study in patients with asthma on inhaled corticosteroid treatment. Ann Allergy Asthma Immunol. 2001;86:103. [Not an intervention of interest]

- 328. Hahn DL. Bronchodilator therapy with or without inhaled corticosteroid therapy for obstructive airway disease. N Engl J Med. 1993 Apr 8;328(14):1044-5. PMID: 8450868. [Not a human study]
- 329. Hamada K, Yasuba H, Tanimura K, et al. How can we stop ICS? –Risk control therapy by as-needed inhaled fluticasone after stepping down. J Allergy Clin Immunol. 2008;121(2):S219. [Excluded study design]
- 330. Hamalainen KM, Laurikainen K, Leionen M, et al. Comparison of two multidose powder inhalers (MDP) in the treatment of asthma with inhaled corticosteroids. Eur Respir J. 1998;12;Suppl 28:61S. [Not an intervention of interest]
- 331. Hampel Jr FC, Martin P, Mazzanotte WS. Early bronchodilatory effects of budesonide formoterol pressurized metered dose inhaler (pMDI) compared with fluticasone propionate salmeterol dry powder inhaler (DPI) and albuterol pMDI in adults with asthma. J Allergy Clin Immunol. 2008;21;2 Suppl 1:S220. [Not an intervention of interest]
- 332. Hancox RJ, Cowan JO, Flannery EM, et al. Randomised trial of an inhaled beta2 agonist, inhaled corticosteroid and their combination in the treatment of asthma. Thorax. 1999 Jun;54:482-7. PMID: 10335000. [Not an intervention of interest]
- 333. Handforth J, Friedland JS, Sharland M. Inhaled corticosteroids after respiratory syncytial virus infection. BMJ (Online). 2009 Apr;338(7701):963. [Not a human study]
- 334. Harding S, Herje N, Hamedani A, et al. Long term effects of inhaled fluticasone propionate in subjects with asthma. Eur Respir J. 1997;10;Suppl 25:173S. [Not an intervention of interest]
- 335. Harding SM, Herje NE, Hamedani AG. Comparison of the long-term effects of inhaled fluticasone propionate FP on the HPA axis in patients with asthma. Ann Allergy Asthma Immunol. 1997;78:156. [Not an intervention of interest]

- 336. Hart L, Sim S, Adcock I, et al. Effects of inhaled corticosteroid on expression and activation of nuclear factor -kB (NFkB) in asthma. Eur Respir J. 1998;12;Suppl 28:115S. [Not an intervention of interest]
- 337. Haughney J, Aubier M, Jorgensen L, et al. Comparing asthma treatment in elderly versus younger patients. Respir Med. 2011 Jun;105(6):838-45. PMID: 21435854. [Not an intervention of interest]
- 338. Hebert JR, Kunkel G, Neffen H, et al. Mometasone furoate (MF) therapy improves asthma symptoms in addition to pulmonary function in patients previously maintained on high doses of inhaled corticosteroids (ICS). Am J Respir Crit Care Med. 2000;161;Suppl 3:A187. [Irretrievable]
- 339. Hedlin G, Svedmyr J, Ryden AC. Systemic effects of a short course of betamethasone compared with high-dose inhaled budesonide in early childhood asthma. Acta Paediatr. 1999 Jan;88(1):48-51. PMID: 10090547. [No outcomes of interest]
- 340. Henriksen JM. Effect of inhalation of corticosteroids on exercise induced asthma: Randomised double blind crossover study of budesonide in asthmatic children. Br Med J (Clin Res Ed). 1985 Jul 27;291(6490):248-9. PMID: 3926141. [Not an intervention of interest]
- 341. Hesselmar B, Adolfsson S. Inhalation of corticosteroids after hospital care for respiratory syncytial virus infection diminishes development of asthma in infants. Acta Paediatr. 2001 Mar;90(3):260-3. PMID: 11332164. [Not in the target population]
- 342. Hofhuis W, van der Wiel EC, Nieuwhof EM, et al. Efficacy of fluticasone propionate on lung function and symptoms in wheezy infants. Am J Respir Crit Care Med. 2005 Feb 15;171(4):328-33. PMID: 15531753. [Not an intervention of interest]
- 343. Holt S, Patel M, Montgomery B, et al. Cohort study of a simple 'step-up' regimen with the asthma control test. Respirology. 2015 Apr;20(3):504-6. PMID: 25572675. [Excluded study design]

- 344. Hozawa S, Terada M, Haruta Y, et al. Comparison of early effects of budesonide/formoterol maintenance and reliever therapy with fluticasone furoate/vilanterol for asthma patients requiring step-up from inhaled corticosteroid monotherapy. Pulm Pharmacol Ther. 2016;37:15-23. DOI: 10.1016/j.pupt.2016.01.005. [Duplicate]
- 345. Huang J-L, Hung I-J, Hsieh K-H. Effect of inhaled beclomethasone dipropionate in the treatment of recurrent wheezing in infancy and early childhood. J Formos Med Assoc. 1993;92(12):1066-9. [Not an intervention of interest]
- 346. Huang JL, Hung IJ, Hsieh KH. Effect of inhaled beclomethasone dipropionate in the treatment of recurrent wheezing in infancy and early childhood. J Formos Med Assoc. 1993 Dec;92(12):1066-9. PMID: 7911355. [Not an intervention of interest]
- 347. Huang SG, Cheng QJ, Sears MR. Asneeded formoterol (F) in asthma: an analysis of the East-Asian subgroup of the RELIEF study. Eur Respir J. 2014;44:P2425. Embase 71850114. [Not an intervention of interest]
- 348. Hughes GL, Edelman JM, Turpin JA. Randomized, open-label pilot study comparing the effects of montelukast sodium tablets, fluticasone aerosol inhaler and budesonide dry powder inhaler on asthma control in mild asthmatics. Am J Respir Crit Care Med. 1999;159(3 (Pt 2)):A641. [Not an intervention of interest]
- 349. Hypertrichosis in children treated with steroids. Prescrire Int. 2008;17(97):204. [Excluded study design]
- 350. Ige OM, Ohaju-Obodo JO, Chukwu C, et al. Effectiveness and safety of adjustable maintenance dosing with budesonide/formoterol turbuhaler compared with traditional fixed doses in bronchial asthma: A multi-centre nigerian study. Afr J Med Med Sci. 2010 Sep;39(3):165-72. PMID: 21416785. [Irretrievable]

- 351. Implementing key therapeutic topics: 1 NSAIDs; antibiotics; and inhaled corticosteroids in asthma. MeReC Bull. 2012;22(3):1-8. [Irretrievable]
- 352. Ind P, Haughney J, Price D, et al. 4-month adjustable or fixed maintenance treatment with budesonide/formoterol in a single inhaler reduces symptoms severity. Eur Respir J. 2002;20;Suppl 38:41s. [Not an intervention of interest]
- 353. Ind P, Haughney J, Price D, et al. Four months adjustable or fixed BD dosing with budesonide/formoterol in a single inhaler reduces symptom severity. Thorax. 2002;57;Suppl III:iii88. [Not an intervention of interest]
- 354. Ind PW, Dal Negro R, Colman N, et al. Inhaled fluticasone propionate and salmeterol in moderate adult asthma II: exacerbations. Am J Respir Crit Care Med. 1998;157;Suppl 3:A415. [Not an intervention of interest]
- 355. Ind PW, Dal Negro R, Colman N, et al. Inhaled fluticasone propionate and salmeterol in moderate adult asthma I: lung function and symptoms. Am J Respir Crit Care Med. 1998;157;Suppl 3:A416. [Not an intervention of interest]
- 356. Ind PW, dal Negro R, Fletcher CP, et al. Inhaled salmeterol and fluticasone propionate therapy in moderate adult asthma. Eur Respir J. 1997;10;Suppl 25:1S. [Not an intervention of interest]
- 357. Ind PW, Haughney J, Price D, et al. Adjustable and fixed dosing with budesonide/ formoterol via a single inhaler in asthma patients: The ASSURE study. Respir Med. 2004 May;98(5):464-75. PMID: 15139576. [Not an intervention of interest]
- 358. Ind PW, Price D, Haughney J, et al.
 Adjustable dosing with
 budesonide/formoterol in a single inhaler
 (symbicortA(R)) provides similarly effective
 treatment of asthma compared with fixed
 dosing but at a lower overall dose [abstract].
 American Thoracic Society International
 Conference; 2003. 38p. [Irretrievable]

- 359. Inhaled corticosteroids for mild asthma. Med Today. 2002;3(1):9. [Not a human study]
- 360. Inhaled corticosteroids may cause only temporary slowing of growth in children, studies suggest. Am J Health-Syst Pharm. 2000 Dec2;57(23):2142-9. [Not a human study]
- 361. Inhaled corticosteroids: Are higher doses better? Drug Ther Bull. 1986 Jan 13;24(1):1-2. PMID: 3516617. [Not a human study]
- 362. Inhaled corticosteroids: Children are at risk from high doses. MeReC Extra. 2007:27. [Irretrievable]
- 363. Inhaled corticosteroids: Do they inhibit growth? Med Today. 2002;3(5):10. [Not a human study]
- 364. Inhaled glucocorticoids found to cause dose-related bone density loss. Pharm J. 2001 Oct;267(7168):454. [Not a human study]
- 365. Inhaled glucocorticoids more effective than leukotriene receptor antagonists for treating asthma. Formulary. 2003 May;38(5):271. [Not a human study]
- 366. Inhaled steroids switch can destabilise asthma. Pharm J. 2002 May;268(7199):710. [Not a human study]
- 367. Inman MD, Watson RM, Rerecich T, et al. Dose-dependent protection against allergen-induced asthmatic responses by inhaled mometasone furoate. European Respiratory Society; 1999 Oct 9-13; Madrid, Spain. 1989p. [Irretrievable]
- 368. Inman MD, Watson RM, Rerecich T, et al. Effect of low doses of mometasone furoate (MF) dry powder inhaler (DPI) on allergen induced asthmatic responses. Am J Respir Crit Care Med. 2000;161;Suppl 3:A187. [Irretrievable]
- 369. Intelligent inhalers for pulmonary delivery. Manuf Chem. 2001;72(4):23-5. [Irretrievable]
- 370. Intermittent therapy effective for mild persistent asthma. J Fam Pract. 2005;54(7):578. Embase 2005312735. [Not a human study]

- 371. Irani AM, Berger W, Qaquandah P, et al. Effect of budesonide inhalation suspension (BIS) on HPA axis function in infants stratified by age [Abstract]. American Thoracic Society 100th International Conference; 2004 May 21-26; Orlando, FL. A37 Poster J106p. [Not an intervention of interest]
- 372. Irani AM, Fitzpatrick S, Smith J, et al. Budesonide inhalation suspension compared with cromolyn sodium: effects on asthma outcomes in young children. Pediatr Res. 2001;49(4):130A. [Not an intervention of interest]
- 373. Jackson C, Lipworth B. Benefits of combination therapy on exacerbations in nonsmoking patients with asthma. J Allergy Clin Immunol. 2008;121(3):780. [Not a human study]
- 374. Jarjour NN, Kelly EAB, Rodriguez RR, et al. Inhaled budesonide (BUD) via turbohaler decreases late asthmatic reaction (LAR) to antigen and down regulates airway lymphocyte function in atopic asthma. Am J Respir Crit Care Med. 1998;157;Suppl 3:A873. [Not an intervention of interest]
- 375. Jayaram L, Pizzichini MM, Cook RJ, et al. Determining asthma treatment by monitoring sputum cell counts: effect on exacerbations. Eur Respir J. 2006
 Mar;27(3):483-94. PMID: 16507847. [Not an intervention of interest]
- 376. Jenkins C, Belousova E, Marks G, et al. Intermittent or continuous inhaled corticosteroids for mild asthma? Respirology. 2006;11;Suppl 2:A70. [Abstract without full-text]
- 377. Jenkins C, Eriksson G, Bateman ED, et al. Efficacy of budesonide/formoterol maintenance and reliever therapy in mild asthma. Eur Respir J. 2013 Sep 11;42:P4125. Embase 71842582. [Abstract without full-text]
- 378. Jenkins C, Goldberg H, Ryder E, et al. The effect of inhaled budesonide on bronchial responsiveness to histamine in patients with asthma. Aust Nz J Med. 1991;21:662. [Not an intervention of interest]

- 379. Jonasson G, Edvardsen E, Carlsen KH. Clinical efficacy of a low dose inhaled budesonide in children with mild asthma previously not treated with steroids. Eur Respir J. 1997;10;Suppl 25:221S. [Not an intervention of interest]
- 380. Jung J, Lee J, Kim J. Treatment of inhaled corticosteroid and leukotriene receptor antagonist in Korean young cough variant asthma children. J Allergy Clin Immunol. 2006;117;2 Suppl 1:S93. [Not an intervention of interest]
- 381. Kaiser HB, Miller CJ, O'Dowd L.

 Measured onset of bronchodilation with
 budesonide and formoterol administered via
 one pressurized metered dose inhaler
 (pMDI) in patients with asthma previously
 receiving inhaled corticosteroids. J Allergy
 Clin Immunol. 2007;119;Suppl 1:S249. [Not
 an intervention of interest]
- 382. Kajosaari M, Syvanen P, Forars M, et al. Inhaled corticosteroids during and after respiratory syncytial virus-bronchiolitis may decrease subsequent asthma. Pediatr Allergy Immunol. 2000 Aug;11(3):198-202. PMID: 10981531. [Not in the target population]
- 383. Kalister H. Treating children with asthma. West J Med. 2001;174(6):415-20. [Not a human study]
- 384. Kaplan A. Inadequately controlled asthma. patients do not understand their treatment plans. Can Fam Phys. 2002 Aug;48:1280-2. [Not a human study]
- 385. Kardos P, Brueggenjuergen B, Baare A, et al. The ATACO study: adjustable maintenance therapy with budesonide and formoterol in a single inhaler. Eur Respir J. 2002;20;Suppl 38:41s. [Not an intervention of interest]
- 386. Kardos P, Bruggenjurgen B, Martin A, et al. The treatment of asthma: A study (TACO asthma control lan) introducing a new adjustable combination-treatment plan. Pneumologie. 2001;55(5):253-7. [Duplicate]

- 387. Kardos P, Brüggenjürgen B, Martin A, et al. The treatment of asthma: a study (TACO asthma control plan) introducing a new adjustable combination-treatment plan. Pneumologie. 2001;55(5):253-7. [Not an intervention of interest]
- 388. Kardos P, Bruggenjurgen B, Martin A, et al. Treatment of bronchial asthma using a new adjustable combination treatment plan: Asthma Control Plan (ATACO). Pneumologie. 2001 May;55(5):253-7. [Duplicate]
- 389. Kardos P, Richter K, Vogelmeier C, et al. Adjustable dosing with budesonide/formoterol in a single inhaler maintains improvement in health-related quality of life at a lower drug load than fixed dosing the ATACO study. Eur Respir J. 2003;22;Suppl 45:Abstract P1696. [Not an intervention of interest]
- 390. Kari O. Helsinki early intervention childhood asthma (HEICA) study: inhaled budesonide halved the number of asthma exacerbations compared with inhaled disodium cromogylcate during 18 months of treatment. Eur Respir J. 2000;16;Suppl 31:311s. [Irretrievable]
- 391. Karkinski D, Arsovski Z, Nikolau M, et al. Inhalation of fluticasone propionate spray compared with theophilline as primary treatment for chronic mild to moderate asthma. Eur Respir J. 2006;28;Suppl 50:500s. [Not an intervention of interest]
- 392. Karpel JP, Fish JE, Craig TJ, et al.

 Mometasone furoate (MF) administered by metered dose inhaler (MDI) reduces oral prednisone requirements and improves pulmonary function of patients with severe persistent asthma. Eur Respir J.

 2000l16;Suppl 31:93s. [Not an intervention of interest]
- 393. Karpel JP, Nayak A, Lumry W, et al. Mometasone furoate reduces oral corticosteroid requirements in patients with severe persisitent asthma previously using other inhaled corticosteroids. Chest. 2002;122(4):65S. [Not an intervention of interest]

- 394. Kasayama S, Otsuki M, Tanemura M, et al. Association of subclinical hypothalamic-pituitary-adrenal axis suppression with bone loss in patients with asthma taking inhaled corticosteroids. Ann Allergy Asthma Immunol. 2013;111(3):229-31. [Not an intervention of interest]
- 395. Kassutto S, Daily JP. Footprints. N Engl J Med. 2004 Sep;351(14):1438-43 and 1475. [Excluded study design]
- 396. Kawayama T, Gauveau GM, Watson RM, et al. Effects of inhaled ciclesonide on circulating Th1/Th2 cells in atopic asthmatics after allergen challenge.

 American Thoracic Society International Conference; 2005 May 20-25; San Diego, CA. A351. [Not an intervention of interest]
- 397. Keeley D. Higher dose inhaled corticosteroids in childhood asthma. Br Med J. 2001 Mar;322(7285):504-5. [Not a human study]
- 398. Kellerman D, Stricker W, Howland W, et al. Effects of inhaled fluticasone propionate (FP) on the HPA axis of patients with asthma. Eur Respir J. 1996;9;Suppl 23:162s. [Not an intervention of interest]
- 399. Kelly M, O' Connor T, Leigh R, et al. Inhaled budesonide /formoterol combination therapy significantly attenuates allergen induced increases in airway myfibroblasts. Eur Respir J. 2007;30;Suppl 51:137s. [Not an intervention of interest]
- 400. Kelso JM. Daily versus as-needed inhaled corticosteroid for mild persistent asthma (the helsinki early intervention childhood asthma study). Pediatrics. 2009;124;suppl 2:S148-9. [Not a human study]
- 401. Kerigan AT, Pugsley SO, Cockcroft DW, et al. Substitution of inhaled beclomethasone dipropionate for ingested prednisone in steroid-dependent asthmatics. Can Med Assoc J. 1977 Apr 23;116(8):867-71. PMID: 851928. [Not an intervention of interest]

- 402. Kerwin EM, Gillespie M, Song S, et al. Dose-ranging study of a fluticasone propionate multidose dry powder inhaler in adolescents and adults with asthma uncontrolled by noncorticosteroid asthma medications. Am J Respir Crit Care Med. 2015;191:A4232. Embase 72052107. [Not an intervention of interest]
- 403. Kerwin EM, Gillespie M, Song S, et al. Randomized, dose-ranging study of a fluticasone propionate multidose dry powder inhaler in adolescents and adults with uncontrolled asthma not previously treated with inhaled corticosteroids. J Asthma. 2016 Jun. Epub 2016 Jun 10. PMID: 27285965. [Not an intervention of interest]
- 404. Ketchell RI, Jensen MW, Montgomery AA, et al. Inhaled fluticasone propionate rapidly attentuates airway responsiveness to adenosine 5'-monophosophate and decreases exhaled nitric oxide in mild asthma. Eur Respir J. 2000;16;Suppl 31:340s. [Irretrievable]
- 405. Kim KT, Lanier BQ, Goldman M, et al. Effect of adjustable-dose (AD) budesonide/formoterol pressurized metered-dose inhaler (pMDI), fixed-dose (FD) budesonide/formoterol pMDI, and FD fluticasone/salmeterol dry powder inhaler (DPI) on predose FEF25-75% [Abstract]. American Thoracic Society International Conference; 2009 May 15-20; San Diego, CA. A2788 Poster #J57. [Not an intervention of interest]
- 406. Kim S, Ye Y, Hur G, et al. Effect of beta2-adrenergic receptor polymorphism in asthma control of patients receiving combination treatment. Yonsei Med J. 2009 Apr 30;50(2):182-8. PMID: 19430548. [Not an intervention of interest]
- 407. Kim SR, Lim KH, Kim MJ, et al. The efficacy and safey of inhaled steroid therapy for prevention of recurrent wheezing after bronchiolitis. Pediatr Allergy Respir Dis. 2004;14(4):392-401. [Not in the target population]

- 408. King V, Nettleton W. Intermittent Inhaled Corticosteroid Therapy for Mild Persistent Asthma in Children and Adults. American Family Physician. 2016; July;94(1):21-2. PMID: 27386720 [not a human study]
- 409. Kini SH, Jain K, Nabar ST, et al. Three modes of delivery of steroids in asthma: a comparison. Eur Respir J. 2001;18;Suppl 33:99s. [Not an intervention of interest]
- 410. Klaassen EMM, van de Kant,K D G., Jobsis Q, et al. Symptoms, but not a biomarker response to inhaled corticosteroids, predict asthma in preschool children with recurrent wheeze. Mediators Inflamm. 2012;2012:162571. PMID: 23304059. [Not an intervention of interest]
- 411. Knox AJ, Deacon K, Clifford R. Blanching the airways: Steroid effects in asthma. Thorax. 2007;62(4):283-5. [Not a human study]
- 412. Ko FWS, Wang HY, Wong GWK, et al. Wheezing in chinese schoolchildren: Disease severity distribution and management practices, a community-based study in hong kong and guangzhou. Clin Exp Allergy. 2005 Nov;35(11):1449-56. PMID: 16297141. [Excluded study design]
- 413. Koenig SM, Murray JJ, Wolfe J, et al. Does measuring BHR add to guideline derived clinical measures in determining treatment for patients with persistent asthma? Respir Med. 2008 May;102(5):665-73. PMID: 18328683. [Not an intervention of interest]
- 414. Konig P, Ford L, Galant S, et al. A 1-year comparison of the effects of inhaled fluticasone propionate (FP) and placebo on growth in pre-pubescent children with asthma. Eur Respir J. 1996;9;Suppll S294. [Not an intervention of interest]
- 415. Kotaniemi-Syrjanen A, Reijonen TM, Korhonen K, et al. Sodium cromoglycate therapy in wheezing infants: Preliminary evidence of beneficial outcome at early school age. Pediatr Int. 2005 Dec;47(6):627-34. PMID: 16354214. [Not an intervention of interest]

- 416. Kovesi T, Schuh S, Spier S, et al.
 Achieving control of asthma in preschoolers.
 CMAJ. 2010 Mar;182(4):E172-183. [Not a human study]
- 417. Kovesi T. In children and adolescents with mild persistent asthma, daily beclomethasone reduces treatment failure compared with rescue beclomethasone plus albuterol. Evidence-based medicine. 2011;16(6):183-4. DOI: 10.1136/ebm1411. [Not a human study]
- 418. Kraemer R, Graf Bigler U, Casaulta Aebischer C, et al. Clinical and physiological improvement after inhalation of low-dose beclomethasone dipropionate and salbutamol in wheezy infants.

 Respiration. 1997;64(5):342-9. PMID: 9311050. [Not an intervention of interest]
- 419. Kraemer R, Graf Bigler U, Casaulta Aebischer C. Clinical and functional improvement after inhalations of low-dose beclomethasone dipropionate (BDP) and salbutamol in wheezy infants. Eur Respir J. 1995;8;Suppl 19:468S. [Not an intervention of interest]
- 420. Kraemer R, Sennhauser F. Inhaled beclometasone and cromoglycate on bronchial hyperreactivity in asthmatic children. Atemwegs-Lungenkrankh. 1986;12(3):110-3. [Not an intervention of interest]
- 421. Kraft M, Israel E, O'Connor GT. Treatment of mild persistent asthma. N Engl J Med. 2007 May;356(20):2096-100. [Not a human study]
- 422. Krishnan JA, Nowak R, Davis SQ, et al. Anti-inflammatory treatment after discharge home from the emergency department in adults with acute asthma. J Emerg Med. 2009 Aug;37;2 Suppl:S35-41. [Not a human study]
- 423. Krishnan JA, Nowak R, Davis SQ, et al. Anti-inflammatory treatment after discharge home from the emergency department in adults with acute asthma. J Allergy Clin Immunol. 2009 Aug;124;Suppl 2:S29-34. [Not a human study]

- 424. Krishnan JA, Nowak R, Davis SQ, et al. Anti-inflammatory treatment after discharge home from the emergency department in adults with acute asthma. Proc Am Thorac Soc. 2009 Aug;6(4):380-5. [Not a human study]
- 425. Kuna P, Chuchalin A, Ringdal N, et al. Low-dose single-inhaler budesonide/formoterol administered once daily is effective in mild-persistent asthma. Eur Respir J. 2001;18;Suppl 33:158s. [Not an intervention of interest]
- 426. Kuna P, Gath I, ThyroffFriesinger U, et al. Equivalence of an innovative multidose salmeterol/fluticasone dry powder inhaler vs comparator in paediatric asthma. Eur Respir J. 2013;42;Suppl 57:918s. Embase 71843005. [Not an intervention of interest]
- 427. Kuna P, Gath I, ThyroffFriesinger U, et al. Equivalence of fluticasone propionate/salmeterol delivered via new multi-dose dry powder inhaler and accuhalerTM in adolescent and adult asthma. Am J Respir Crit Care Med. 2013;187:A2611. [Not an intervention of interest]
- 428. Kuna P, Lalloo U, Bateman ED, et al. Budesonide/formoterol in a single inhaler rapidly improves lung function in adult patients with mild or moderate asthma. European Respiratory Society Annual Congress; 2002. Abstract P2400. [Not an intervention of interest]
- 429. Kuo HP, Uy TR. The relationship of hypodense eosinophil with clinical severity and its response to inhaled corticosteroid in patients with bronchial asthma. Eur Respir J. 1993;6;Suppl 17:584S. [Not an intervention of interest]
- 430. Kuzik BA. Inhaled corticosteroids in children with persistent asthma: Effects on growth. Paediatr Child Health. 2015
 Jun;20(5):248-50. [Not a human study]

- 431. La Rosa M, Francesco G, Musarra I, et al. Double-blind comparative study of inhaled flunisolide and flunisolide plus salbutamol in bronchial asthma in children. Curr Ther Res Clin Exp. 1991;50(1):56-61. [Not an intervention of interest]
- 432. LaForce CF, Baker JW, Amin D, et al. Ciclesonide a novel inhaled steroid has no effect on hypothalamic pituitary adrenal (HPA) axis function in mild to moderate asthmatics. J Allergy Clin Immunol. 2003;111;Suppl 2:S218. [Not an intervention of interest]
- 433. Lahzami S, King GG. Targeting small airways in asthma: The new challenge of inhaled corticosteroid treatment. Eur Respir J. 2008 Jun;31(6):1145-7. PMID: 18515551. [Not a human study]
- 434. Lai S-T, Hua Y-M, Lai Y-S, et al.

 Comparison of nebulized budesonide with intravenous dexamethasone in the treatment of young children hospitalized with acute asthma. J Med Sci. 2005 Oct;25(5):223-8.

 [Not in the target population]
- 435. Lalloo UG, Malolepsky J, Kozma D, et al. Budesonide and formoterol in a single inhaler controls exacerbations more effectively than a higher dose of inhaled corticosteroids alone, in mild-moderate persistent asthma. Eur Resp J. 2001;18;Suppl 33:43s. [Not an intervention of interest]
- 436. Lalloo UG, Malolepsky J, Kozma D, et al. Budesonide and formoterol in a single inhaler is more effective than a higher dose of inhaled corticosteroid in mild-moderate persistent asthma. Eur Resp J. 2001;18;Suppl 33:159s. [Not an intervention of interest]
- 437. Lalloo UG, Malolepszy J, Kozma D, et al. Symbicort(R) (budesonide and formoterol in a single inhaler) is more effective than increasing the dose of inhaled corticosteroids in mild asthma. Annual Thoracic Society 97th International Conference; 2001; San Francisco, CA. D31p. [Not an intervention of interest]

- 438. Lalloo UG, Malolepszy J, Kozma D, et al. Symbicort(R) (budesonide and formoterol in a single inhaler) is more effective than increasing the dose of inhaled corticosteroids in mild asthma. Am J Respir Crit Care Med. 2001;163;Suppl 5:A863. [Irretrievable]
- 439. Lan WP, Wang J, Dai C, et al. Efficacy of fluticasone proprioante aerosol versus budesonide suspention in treatment of recurrent wheezing caused by bronchiolitis. Chin J Contemp Pediatr. 2016 Apr; 18(4):316-9. [Excluded study design]
- 440. Langdon CG, Thompson J. A multicentre study to compare the efficacy and safety of inhaled fluticasone propionate and budesonide via metered-dose inhalers in adults with mild-to-moderate asthma. British Journal of Clinical Research. 1994;5:73-84. [Not an intervention of interest]
- 441. Lara-Perez EA. Improvement of the asthma in children using salmeterol and fluticasone (Seretide) in inhaled combination [abstract]. XIX World Allergy Organization Congress; 2005. 816p. [Irretrievable]
- 442. Laurikainen K, Toivanen P, Silvasti M, et al. Comparison of two beclomethasone dipropionate (BDO) powder inhalers in the treatment of asthma. Eur Resp J. 1997;10;Suppl 25:235S. [Not an intervention of interest]
- 443. Laursen LC, Taudorf E, Weeke B, et al. High-dose inhaled budesonide in treatment of severe steroid-dependent asthmatics. Lancet. 1983 Dec 3;2(8362):1305. PMID: 6139644. [Excluded study design]
- 444. Laviolette M, Barnes N, Lindsay C, et al. Absence of sputum eosinophils in subjects with symptomatic asthma on inhaled budesonide [Abstract]. European Respiratory Society Annual Congress; 2002. P1753. [Not an intervention of interest]
- 445. Laviolette M, Ferland C, Trepanier L, et al. Effects of inhaled steroids on blood eosinophils in moderate asthma. Ann N Y Acad Sci. 1994 May 28;725:288-97. PMID: 8031001. [Not an intervention of interest]

- 446. Lawrance R, Ambrose H, Goldman M. Effect of gly16arg beta2-adrenergic receptor variation on the long-term safety of formoterol (FM) in combination with budesonide (BUD) and of BUD alone, delivered via one pressurized metered-dose inhaler (pMDI) in patients with moderate to severe asthma [Abstract]. American Thoracic Society International Conference; 2007 May 18-23; San Francisco, California. 420p. [Irretrievable]
- 447. Le Bourgeois M, Cormier C, Kindermans C, et al. Inhaled beclomethasone and bone metabolism in young asthmatic children: A six month study. J Allergy Clin Immunol. 1995 Oct;96(4):565-7. PMID: 7560673. [Excluded study design]
- 448. Lee DKC, Currie GP, Cockburn WJ, et al. Budesonide/formoterol and fluticasone/salmeterol combination inhalers delay immediate albuterol recovery following acute bronchoconstriction. J Allergy Clin Immunol. 2003;111;Suppl 2:S202. [Not an intervention of interest]
- 449. Lee DKC, Currie GP, Cockburtn WJ, et al. Comparison of budesonide/formoterol versus fluticasone/salmeterol combination inhalers in moderate persistent asthma [abstract]. American Thoracic Society International Conference; 2003. 613p. [Irretrievable]
- 450. Lee-Wong M, Dayrit FM, Kohli AR, et al. Comparison of high-dose inhaled flunisolide to systemic corticosteroids in severe adult asthma. Chest. 2002 Oct;122(4):1208-13. PMID: 12377843. [Not in the target population]
- 451. Leflein JG, Berger WE, Uryniak T, et al. Long term safety and systemic effects of budesonide and formoterol administered via one pressurized metered dose inhaler (pMDI) in children with asthma. J Allergy Clin Immunol. 2008;21;2 Suppl 1:S155. [Not an intervention of interest]

- 452. Leflein JG, Gawchick SM, Galant SP, et al. Safety of budesonide inhalation suspension (Pulmicort Respules) after up to 52 weeks of treatment in infants and young children with persistent asthma. Allergy Asthma Proc. 2001;22(6):359-66. [Not an intervention of interest]
- 453. Leidy NK, Gutierrez B, Lampl K, et al. Can patients with asthma feel inhaler therapy working right away? two clinical trials testing the effect of timing of assessment on patient perception. J Asthma. 2009

 Dec;46(10):1006-12. PMID: 19995138.

 [Not an intervention of interest]
- 454. Leidy NK, Patrick DL, Boggs R, et al.
 Perceived onset of effect of budesonide and
 formoterol administered via one pressurized
 metered dose inhaler in patients with asthma
 previously receiving inhaled corticosteroids.
 J Allergy Clin Immunol. 2007;119;Suppl
 1:S246. [Not an intervention of interest]
- 455. Lemanske RF, Lockey RF, Murphy KR. Effects of one year of treatment with mometasone furoate metered dose inhaler (MF-MDI) on growth in children with asthma. Eur Respir J. 2004;24;Suppl 48:379s. [Not an intervention of interest]
- 456. Leuppi JD, Salzberg M, Meyer L, et al. An individualized, adjustable maintenance regimen of budesonide/formoterol provides effective asthma symptom control at a lower overall dose than fixed dosing. Swiss Med Wkly. 2003 May 31;133(21-22):302-9. PMID: 12861468. [Not an intervention of interest]
- 457. Levy ML, Stevenson C, Maslen T.
 Comparison of short courses of oral prednisolone and fluticasone propionate in the treatment of adults with acute exacerbations of asthma in primary care. Thorax. 1996 Nov;51(11):1087-92. PMID: 8958890. [Not in the target population]

- 458. Li LW, Huang Y, Luo R, et al. Efficacy of regular or intermittent inhalation of corticosteroids in treatment of asthma and its effects on growth and development in children. Zhongguo Dangdai Erke Zazhi. 2015 Mar;17(3):237-40. [Not an intervention of interest]
- 459. Li Y, Liu D, Yi H-L. Clinical significance of bronchial reversibility test in the treatment of childhood asthma. Chin J Contemp Pediatr. 2013;15(2):105-8. [Not an intervention of interest]
- 460. Li YQ, Xue HY, Chen W, et al.

 Application of asthma predictive indexbased group therapy in wheezing children under 5 years of age. Zhongguo Dangdai Erke Zazhi. 2014 Aug;16(8):795-9. [Not an intervention of interest]
- 461. Liam C, Pang Y, Chua K. Satisfaction level and asthma control among malaysian asthma patients on symbicort maintenance and reliever therapy (SMART) in the primary care setting (SMARTEST study). Asian Pac J Allergy Immunol. 2014 Jun;32(2):145-52. PMID: 25003728. [Excluded study design]
- 462. Lim DH, Kim JH, Son BK. New regimen of inhaled corticosteroid in preschool children with asthma. J Korean Med Assoc. 2012 Dec;55(12):1201-6. DOI: http://dx.doi.org/10.5124/jkma.2012.55.12.1 201. [Not a human study]
- 463. Lin C, Hsu J, Hsiao Y, et al.
 Budesonide/formoterol maintenance and reliever therapy in asthma control: Acute, dose-related effects and real-life effectiveness. Respirology. 2015
 Feb;20(2):264-72. PMID: 25366969. [Not an intervention of interest]
- 464. Lin J, Tang Y, Xiu Q. Real-life effectiveness of budesonide/formoterol therapy in asthma: A subanalysis of the SMARTASIA study. Allergy & Asthma Proceedings. 2016;Feb;37(1):27-34. PMID: 26831844 [not an intervention of interest]

- 465. Lindgren S, Eriksson NE, Lindholm N. Experience of local inhalation of beclomethasone dipropionate (becotide) in the treatment of adult steroid-dependent asthmatic patients. Scand J Respir Dis Suppl. 1977;101:163-72. PMID: 343237. [Not an intervention of interest]
- 466. Lindgren S, Eriksson NE, Lindholm N. Experience of local inhalation of beclomethasone dipropionate becotide in the treatment of adult steroid-dependent asthmatic patients. Scand J Respir Dis Suppl. 1977;101:163-72. [Not an intervention of interest]
- 467. Lipworth BJ, Short PM, Williamson PA, et al. A randomized primary care trial of steroid titration against mannitol in persistent asthma: STAMINA trial. Chest. 2012 Mar;141(3):607-15. PMID: 21998259. [Not an intervention of interest]
- 468. Liu CT, Wang YM, Wang G, et al. A clinical study on the significance of airway hyperresponsiveness monitoring in the adjustment of combined therapy for asthmatic patients. Chin J Tuberc Respir Dis. 2007 Jul;30(7):498-503. [Not an intervention of interest]
- 469. Lockey RF, Abreu P, Kimel M, et al. Health related quality of life effects of mometasone furoate dry-powder inhaler corticosteroids. Eur Respir J. 2003;22;Suppl 45:P1834. [Not an intervention of interest]
- 470. Lodrup Carlsen KC, Carlsen KH, Nikander K, et al. Nebulized budesonide after hospitalization for recurrent bronchial obstruction in children younger than 18 months. Pediatr Allergy Immunol. 2001 Jun;12(3):159-65. PMID: 11473681. [Not an intervention of interest]
- 471. Look for adrenal insufficiency caused by inhaled corticosteroids. Pharm J. 2001 Oct;267(7168):454. [Not a human study]
- 472. Loukides S, Papageorgiou M, Karokis A, et al. Single inhaler therapy (SiT) with budesonide/formoterol (BUD/FUM) is effective in asthma control. Eur Respir J. 2005;26;Suppl 49:A848. [Abstract without full-text]

- 473. Low-dose steroids and asthma mortality. Hosp Pract. 2000;35(10):25. [Not a human study]
- 474. Lowhagen O, Wever AM, Lusuardi M, et al. The inflammatory marker serum eosinophil cationic protein (ECP) compared with PEF as a tool to decide inhaled corticosteroid dose in asthmatic patients. Respir Med. 2002 Feb;96(2):95-101. PMID: 11862965. [Not an intervention of interest]
- 475. Lyutzkanova T, Klinkanova M. The effect of drugs on inhalatory provocation tests in children with bronchial asthma. Folia Med (Plovdiv). 1980;22(4):33-5. PMID: 6790377. [Not an intervention of interest]
- 476. Maayan C, Itzhaki T, Bar-Yishay E, et al. The functional response of infants with persistent wheezing to nebulized beclomethasone dipropionate. Pediatr Pulmonol. 1986 Jan-Feb;2(1):9-14. PMID: 3513105. [Not an intervention of interest]
- 477. Macias CG, Felner EI, Gan V. Inhaled corticosteroids may be superior to systemic corticosteroids in children with moderate-to-severe acute asthma. Pediatr Asthma Alelrgy Immunol. 2003;16(3):121-8. Embase 2003322769. [Not in the target population]
- 478. Maintenance treatment. J Invest Allergol Clin Immunol. 2010;20;Suppl 1:19-26. [Not a human study]
- 479. Mallol J, Aguirre V, Barrueto L, et al. Effect of inhaled fluticasone on lung function in infants with recurrent wheezing: A randomised controlled trial. Allergol Immunopathol (Madr). 2009 Mar-Apr;37(2):57-62. PMID: 19445860. [Not an intervention of interest]
- 480. Malo JL, Cartier A, Laviolette M, et al. Skin bruising adrenal function and bone metabolism in asthmatic subjects on inhaled beclomethasone and fluticasone. Am J Resp Crit Care Med. 1998;157;Suppl 3:A406. [Not an intervention of interest]

- 481. Malur A, Rambasek T, Isabella T, et al. Therapy for asthma with long acting beta-agonist and a lower dose of an inhaled corticosteroid (ICS) does not activate proinflammatory genes when compared with higher dose ICS alone [Abstract]. American Thoracic Society 100th International Conference; 2004 May 21-26; Orlando, FL. C8p. [Not an intervention of interest]
- 482. Managing asthma and allergy medications during pregnancy. J Respir Dis. 2000;21(12):744-6. [Not a human study]
- 483. Manolitsas N, Wang J, Trigg C, et al. Long-term inhaled beclomethasone dipropionate BDP and bronchial inflammation in mild asthma. Aust NZ J Med. 1994;24:460. [Not an intervention of interest]
- 484. Marcus P. Dosing inhaled steroids in asthma: is once-a-day administration effective?. Chest. 2003 Oct;124(4):1196-8. PMID: 14555546. [Not a human study]
- 485. Maritotti F, Poli G, Acerbi D, et al. Pharmacokinetics and pharmacodynamics of beclomethasone dipropionate and formoterol combination after inhalation using dry powder inhaler. Eur Respir J. 2007;20;Suppl 51:350s. [Not an intervention of interest]
- 486. Mark Fitzgerald J. A randomized, controlled trial of high dose, inhaled budesonide versus oral prednisone in patients discharged from the emergency department following an acute asthma exacerbation. Can Respir J. 2000;7(1):61-7. [Not in the target population]
- 487. Maspero J, Cherrez I, Nolte H. Long-term safety and tolerability of two doses of mometasone furoate/formoterol (MF/F) combination, administered via a metered-dose inhaler, for the treatment of moderate-to-severe persistent asthma. J Allergy Clin Immunol. 2009;123;2S Suppl 1:S159. [Not an intervention of interest]

- 488. Maspero JF, Cherrez I, Nolte H.

 Mometasone furoate and formoterol (MF/F)
 combination administered via a metereddose inhaler (MDI) for the treatment of
 asthma: results from a 1-yr safety study.
 American Thoracic Society International
 Conference; 2009 May 15-20; San Diego,
 CA. A2768 Poster #J37. [Not an
 intervention of interest]
- 489. McCarthy T P, Edin H M, House K, et al. Low dose salmeterol/fluticasone propionate combination (SFC) via metered dose inhaler (MDI) improves asthma control and quality of life in patients not well controlled on inhaled steroids (ICS). Eur Respir J. 2002. 20;Suppl 38:47s. [Irretrievable]
- 490. McCarthy T P, Edin H M, House K, et al. Salmeterol/fluticasone 50/100 (SFC) dry powder (DPI) provides improved control and quality of life in patients symptomatic on inhaled corticosteroids (ICS). Eur Respir J. 2002;20;Suppl 38:47s. [Not an intervention of interest]
- 491. McCarthy TP, Edin HM, House K, et al. Quality of life and asthma control assessment in patients previously on inhaled corticosteroids (ICS) treated with salmeterol/fluticasone combination (SFC) metered dose inhaler (MDI). Thorax. 2001;56;Suppl 3:iii64. [Not an intervention of interest]
- 492. McCarthy TP, Edin HM, House K, et al. The effects of salmeterol/fluticasone combination (SFC) dry powder inhaler (DPI) on asthma control and quality of life in patients previously treated with inhaled corticosteroids (ICS). Thorax. 2001;56;Suppl 3:iii63. [Not an intervention of interest]
- 493. McCarthy TP, Greening AP, Holgate SK, et al. The efficacy of salmeterol/fluticasone propionate combination (SFC) metered dose inhaler compared with beclomethasone dipropionate (BDP) in patients not well controlled at step 1 of the British guidelines on asthma management (BGAM). Thorax. 2001;56;Suppl 3:iii62. [Not an intervention of interest]

- 494. McCarthy TP, Russell D, Baxter LE, et al. A comparison of the efficacy of salmeterol/fluticasone propionate combination (SF) with beclometasone dipropionate (BDP) delivered via metered dose inhaler (MDI) in patients mot well controlled on bronchodilators alone. Eur Respir J. 2001;18;Suppl 33:53s. [Not an intervention of interest]
- 495. McKinlay L, Williamson PA, Short PM, et al. Proof of concept study to evaluate step-down therapy with inhaled corticosteroid alone or additive therapy on surrogate inflammatory markers in asthma. Br J Clin Pharmacol. 2011 Jan;71(1):128-31. PMID: 21143509. [Not an intervention of interest]
- 496. Mehta PN. Asthma and the school going child. Indian Pediatr. 2002 Aug;39(8):731-8. [Not a human study]
- 497. Melamed J, Beaucher W. A prospective evaluation of the adequacy of peak inspiratory flow rates and validation of the turbutester score in asthmatic individuals with "low" peak expiratory flow rates: Implications for dry powder inhalers. J Allergy Clin Immunol. 2003

 Mar;111(3):648-50. [Not an intervention of interest]
- 498. Mellon M, Dukes E, Ollendorf D, et al. Budesonide inhalation suspension improves symptom-free days and use of asthmarelated services in infants and young children. Ann Allergy Asthma Immunol. 2000;84:161. [Not an intervention of interest]
- 499. Meltzer EO, Uryniak T, Trudo F, et al. Efficacy and safety of budesonide (BUD) administered by pressurized metered-dose inhaler (pMDI) in children aged 6 to <12 years with asthma: a phase II study. Am J Resp Crit Care Med. 2014;189:A1811. [Not an intervention of interest]
- 500. Mendelson L, Welch M, Murphy K, et al. Greater efficacy of budesonide inhalation suspension compared to cromolyn sodium over 52 weeks in young children with persistent asthma. Am J Respir Crit Care Med. 2000;161;Suppl 3:A36. [Irretrievable]

- 501. Merkus PJFM, De Jongste JC. Inhaled corticosteroids and long term outcome in adults with asthma. Thorax. 2006
 Nov;61(11):1011. [Not a human study]
- 502. Mezzanotte WS, Miller CJ, Senn S.
 Comparative bronchodilatory effects of formoterol dry powder inhaler (DPI) versus the combination of formoterol and budesonide pressurized metered dose inhaler (pMDI). J Allergy Clin Immunol. 2007;119;Suppl 1:S248. [Not an intervention of interest]
- 503. Micheletto C, Mauroner L, Burti E, et al. Inhaled beclomethasone dipropionate and budesonide dry powder in chronic asthma: lung function-serum ECP relationship. Eur Respir J. 1998;12;Suppl 28:351S. [Not an intervention of interest]
- 504. Mild asthma may not require daily corticosteroid use. Pharm J. 2005 Apr;274(7345):442. [Not a human study]
- 505. Milenkovic B, Bosnjak-Petroic V. Self-management program in treatment of asthma. Srpski Arhiv Za Celokupno Lekarstvo. 2007 Mar-Apr;135:147-52. [Not an intervention of interest]
- 506. Mileva S, Galeva I, Kufardzhieva A, et al. Inhaled corticosteroids in wheezing infants with clinical diagnosis asthma [Abstract]. XIX World Allergy Organization Congress; 2005:853p. [Excluded study design]
- 507. Milgrom H, Berger W, Noonan M, et al. Rapid onset of significant improvements in peak expiratory flow among children with asthma treated with mometasone furoate administered via a dry powder inhaler. Chest. 2008;134(4):51003s. [Not an intervention of interest]
- 508. Miller DS, Yiu G, Hellriegel ET, et al. Dose-ranging study of salmeterol using a novel fluticasone propionate/salmeterol multidose dry powder inhaler in patients with persistent asthma. Allergy Asthma Proc. 2016;37:291-301. PMID: 27216137. [Not an intervention of interest]

- 509. Mitra A, Sims EJ, Mukhopadhyay S, et al. Low-dose inhaled corticosteroid (ICS) confers optimal anti-inflammatory effects while additional bronchodilator activity is afforded by salmeterol in mild persistent asthmatic children. J Allergy Clin Immunol. 2003;111;Suppl 2:S145. [Not an intervention of interest]
- 510. Mitsui S, Yoshida T, Kobayashi S, et al. Double-blind study on the clinical effect of beclomethasone dipropionate inhaler and its placebo in the treatment of steroid-independent bronchial asthma. Rinsho Hyoka. 1977;5(2):213-30. [Not an intervention of interest]
- 511. Miyamoto T, Takishima T, Makino S, et al. Clinical Examination of Fluticasone Propionate Dry Powder: Comparison between Beclomethasone Dipropionate Inhaler in Bronchial Asthma. Rinsho Iyaku. 1994;10(2):321-45. [Not an intervention of interest]
- 512. Moeller A, Franklin P, Hall GL, et al. Inhaled fluticasone dipropionate decreases levels of nitric oxide in recurrenty wheezy infants. Pediatr Pulmonol. 2004 Sep;38(3):250-5. PMID: 15274106. [Not an intervention of interest]
- 513. Moeller A, Franklin PJ, Straub D, et al. Inhaled fluticasone diproprionate decreases levels of nitric oxide in recurrently wheezy infants. Eur Respir J. 2003;22;Suppl 45:388s. [Not an intervention of interest]
- 514. Mohan G, MacLusky KA, Godley CC, et al. A comparison of a budesonide-based and a beclomethasone/prednisolone-based management strategy for the treatment of severe asthma in general practice. Dis Manage Health Out. 1999;5(2):83-91. DOI: 10.2165/00115677-199905020-00003. [Not an intervention of interest]
- 515. Mometasone (asmanex twisthaler) for asthma. Med Lett Drugs Ther. 2005 Dec 5-19;47(1223-1224):98-9. PMID: 16331243. [Not a human study]

- 516. Mometasone/Formoterol (dulera) for asthma. Med Lett Drugs Ther. 2010 Oct 18;52(1349):83-4. PMID: 21045758. [Not a human study]
- 517. Montelukast for persistent asthma. Med Lett Drugs Ther. 1998 Jul 17;40(1031):71-3. PMID: 9698701. [Not a human study]
- 518. More support for single maintenance and reliever therapy regimens for asthma. Drug Ther Bull. 2013;51(5):51-2. [Not a human study]
- 519. Morgul M, Cerrahoglu K, Ilvan A, et al. The effect of inhaled budesonide on pulmonary function (FEV1) of asthmatic patients. Eur Respir J. 1998;12;Suppl 29:73s. [Not an intervention of interest]
- 520. Morimoto Y, Yagura T, Yamamura Y. The effect of prolonged administration of beclomethasone dipropionate inhaler on adrenocortical functions in bronchial asthma. J Med. 1977;8(1):1-26. PMID: 194990. [Not an intervention of interest]
- 521. Moss MH. Long-term effect of budesonide on hypothalamic-pituitary-adrenal axis function in children with mild to moderate asthma. Pediatrics. 2005;116(2):567. [Not a human study]
- 522. Murphy K, Fitzpatrick S, Cruz Rivera M, et al. Greater caregiver satisfaction and compliance with budesonide inhalation suspension vs cromolyn sodium. Am J Respir Crit Care Med. 2002;165;Suppl 8:A742. [Not an intervention of interest]
- 523. Murphy K, Nelson H, Parasuraman B, et al. Patient satisfaction with budesonide and formoterol in one pressurized metered-dose inhaler in adults with mild to moderate persistent asthma [Abstract]. American Thoracic Society International Conference; 2007 May 18-23; San Francisco, California. 928p. [Irretrievable]
- 524. Murphy KR, Meltzer EO, Nolte H, et al. Quality of life is improved in persistent asthma subjects treated with mometasone furoate/formoterol: a new inhaled corticosteroid/long-acting beta2-agonist combination. Chest. 2010;138(4):159A. [Not an intervention of interest]

- 525. Murphy KR, Parasuraman B, Pethick N, et al. Greater improvement in functional health status with budesonide inhalation suspension (pulmicort respules) versus conventional therapy in children with persistent asthma. Pediatr Res. 2002;51(4):177A. [Not an intervention of interest]
- 526. Murphy KR, Pearlman DS, Uryniak T, et al. Efficacy of budesonide/formoterol pressurized metered dose inhaler (BUD/FM pMDI) in children with asthma previously treated with inhaled corticosteroids (ICSs) [Abstract]. American Thoracic Society International Conference; 2008 May 16-21; Toronto, Canada. A710. [Not an intervention of interest]
- 527. Murphy VE, Jensen ME, Mattes J, et al. The breathing for life trial: a randomised controlled trial of fractional exhaled nitric oxide (FENO)-based management of asthma during pregnancy and its impact on perinatal outcomes and infant and childhood respiratory health. BMC Pregnancy and Childbirth. 2016;16:111. DOI: 10.1186/s12884-016-0890-3. [Not a human study]
- 528. Murphy VE, Powell H, Gibson P.
 Exacerbations following step down and step up inhaled corticosteroid therapy in the managing asthma in pregnancy (MAP) study. Am J Respir Crit Care Med. 2015;191:A4275. [Not an intervention of interest]
- 529. Murphy VE, Powell H, Gibson PG.
 Exacerbations of asthma following changes in inhaled corticosteroid (ICS) and long acting beta agonist (LABA) therapy in the managing asthma in pregnancy (MAP) study. J Paediatr Child Health. 2015;62:64. [Not an intervention of interest]
- 530. Murphy VK, Ververeli K. Antibody response after varicella vaccination similar in children treated with budesonide inhalation suspension (BIS) or nonsteroidal conventional asthma therapy (NSCAT). Eur Respir J. 2006;28;Suppl 50;711s. [Excluded study design]

- 531. Murray C, Martin L, Deas J, et al. Early intervention with inhaled fluticasone propionate (FP) in wheezy children under 2 years of age [abstract]. American Thoracic Society International Conference; 2003. 617p. [Irretrievable]
- 532. Murray CS, Gore C, Kerry G, Custovic A, et al. Inhaled fluticasone propionate in young wheezy children- does early use alter the course of disease? [Abstract]. American Thoracic Society International Conference; 2006 May 19-24; San Diego, California: Proceedings of the American Thoracic Society; 2006:A54p. [Irretrievable]
- 533. Murray CS, Woodcock A, Langley SJ, et al. Secondary prevention of asthma by the use of inhaled fluticasone propionate in wheezy INfants (IFWIN): Double-blind, randomised, controlled study. Lancet. 2006 Aug 26;368(9537):754-62. PMID: 16935686. [Not an intervention of interest]
- 534. Murray JJ, Busse W, Dockhorn R, et al. Long-term safety of mometasone furoate (MF) administered by dry powder inhaler (DPI) in patients with moderate persistent asthma. Eur Respir J. 2000;16;Suppl 31:280. [Irretrievable]
- 535. Naji N, O'Byrne PM. Asthma maintenance and reliever therapy. Ann Allergy Asthma Immunol. 2012 Dec;109(6):388-91. [Not a human study]
- 536. Nakanishi AK, Klasner AK, Rubin BK. A randomized controlled trial of inhaled flunisolide in the management of acute asthma in children. Chest. 2003
 Sep;124(3):790-4. PMID: 12969999. [Not in the target population]
- 537. Nana A, Youngchaiyud P, Charoenratanakul S, et al. High-dose inhaled budesonide may substitute for oral therapy after an acute asthma attack. J Asthma. 1998;35(8):647-55. PMID: 9860085. [Not in the target population]

- 538. Nathan R, Pearlman D, Nayak A, et al. Safety and tolerability of medium-dose mometasone furoate/formoterol treatment versus mometasone furoate or formoterol monotherapies in persistent asthmatics who previously used medium-dose inhaled corticosteroids (alone or with long-acting beta2-agonist). Chest. 2009;136(4):8S. [Not an intervention of interest]
- 539. Nayak A, Charous BL, Finn A, et al. A novel inhaled corticosteroid ciclesonide significantly improves quality of life in patients with mild-to-moderate asthma. J Allergy Clin Immunol. 2005;115;Suppl 2:S210. [Not an intervention of interest]
- 540. Nebulized budesonide for asthma in children. Med Lett Drugs Ther. 2001 Jan;43(1096):6-7. [Not a human study]
- 541. Nebulized budesonide for asthma in children. Med Lett Drugs Ther. 2001 Jan 22;43(1096):6-7. PMID: 11177221. [Not a human study]
- 542. Nelson H, Murphy K, Parasuraman B, et al. Budesonide and formoterol in one metered dose inhaled improves health related quality of life in adults with mild to moderate persistent asthma previously treated with inhaled corticosteroids. J Allergy Clin Immunol. 2007;119;Suppl 1:S246. [Not an intervention of interest]
- 543. Nelson HS, Baitinger L, Scott C, et al. Salmeterol/fluticasone propionate (50/100μg dose) non-CFC metered dose inhaler is safe and effective in patients with asthma using short-acting β2-agonists alone. Eur Respir J. 2000;16;Suppl 31:53s. [Not an intervention of interest]
- 544. New data from asthma and COPD inhaler studies. Pharm J. 2000 Sep;265(7113):355. [Not a human study]
- 545. Newman K, Corren J, Nelson H. Improves pulmonary function in patients with mild-to-moderate asthma treated with inhaled HFA Flunisolide for 12 weeks. J Allergy Clin Immunol. 2001;107(2):S104. [Not an intervention of interest]

- 546. NICE endorses costly inhaler devices for children if asthma better controlled. Pharm J. 2002 Apr;268(7194):524. [Not a human study]
- 547. Nielson K, Mather DC, Clements D, et al. Inhaled fluticasone propionate inproves asthma-related quality of life in oral steroid-dependent asthmatic subjects undergoing reduction or elimination of oral steroid use. J Allergy Clin Immunol. 2001;107(2):S100. [Not an intervention of interest]
- 548. Nielson KG, Bisgard H. Effect of inhaled budesonide on symptoms, lung functions and bronchial hyperresponsiveness to cold, dry air challenge in preschool children. Eur Respir J. 2000;16;Suppl 31:306s. [Not an intervention of interest]
- 549. Niphadkar P, Joshi J, Mahesh PA, et al. Randomized double blind comparison of ciclesonide formoterol combination inhale rand ciclesonide alone in persistent asthma [Abstract]. European Respiratory Society Annual Congress; 2008 Oct 4-8; Berlin, Germany. E4278. [Not an intervention of interest]
- 550. Niu CK, Huang SC, Huang CB. Effect of short-course budesonide on the bone turnover of asthmatic children. Pediatr Pulmonol. 1998 Oct;26(4):290-2. PMID: 9811081. [Not an intervention of interest]
- 551. Noble V, Ruggins NR, Everard ML, et al. Inhaled budesonide for chronic wheezing under 18 months of age. Arch Dis Child. 1992 Mar;67(3):285-8. PMID: 1575550. [Not an intervention of interest]
- 552. Noonan M, Berger W, Thomas R, et al. Inhaled fluticasone propionate dry powder administered via the diskus or diskhaler is safe and effective in pediatric patients with chronic asthma. Eur Respir J. 1997;10;Suppl 25:221s. [Not an intervention of interest]

- 553. Noonan M, Corren J, Leflein J. Safety of mometasone furoate dry powder inhaler and comparison with beclomethasone dipropionate in children with asthma previously maintained on inhaled corticosteroids (ICS). Chest. 2004;126;Suppl 4:912S. [Not an intervention of interest]
- 554. Noonan MJ, Rosenwasser LJ, Martin P, et al. Effect of budesonide and formoterol administered via one pressurized metered dose inhaler on lung function in adults and adolescents with moderate to severe persistent asthma. J Allergy Clin Immunol. 2007;119;Suppl 1:S2. [Not an intervention of interest]
- 555. Novotna B, Teturova J, Kolman P, et al. A multi-centre, double-blind, double-dummy, randomised, parallel group study to assess efficacy and safety of beclometasone dipropionate and ease of handling of a breath operated aerosol inhaler in adults with reversible airways obstruction. Eur Respir J. 2001;18;Suppl 33:101s. [Not an intervention of interest]
- 556. Nuhoglu Y, Bahceciler NN, Barlan IB, et al. The effectiveness of high-dose inhaled budesonide therapy in the treatment of acute asthma exacerbations in children. Ann Allergy Asthma Immunol. 2001

 Mar;86(3):318-22. PMID: 11289332. [Not an intervention of interest]
- 557. O' Byrne P, Pedersen S, Lamm C-J, et al. Severe exacerbations, decline in lung function and inhaled budesonide in asthma. Eur Respir J. 2007;30;Suppl 51:619s. [Not an intervention of interest]
- 558. O' Connor RD, Patrick DL, Parasuraman MB, et al. Patient satisfaction during treatment with adjustable dose budesonide/formoterol pressurized metered dose inhaler (BUD/FM pMDI) fixed dose BUD/FM pMDI and fixed dose fluticasone/salmeterol dry powder inhaler (FP/SM DPI) [Abstract]. American Thoracic Society International Conference; 2008 May 16-21; Toronto, Canada. A609. [Not an intervention of interest]

- 559. O' Connor TM, Kelley MM, Leigh R, et al. Additional anti-inflammatory effects of inhaled budesonide in subjects with atopic asthma. Eur Respir J. 2006;28;Suppl 20:441s. [Not an intervention of interest]
- 560. O' Dowd L, Berger WE, Leflein JG, et al. Health related quality of life (HRQL) and asthma control after long term treatment with budesonide and formoterol administered via one pressurized meter dose inhaler (pMDI) compared with budesonide dry powder inhaler (DPI) alone in children with asthma. J Allergy Clin Immunol. 2008;21;2 Suppl 1:S152. [Not an intervention of interest]
- 561. Obodo O, Ige O, Chukwu C. Scientific rationale for using a single inhaler for asthma control by comparison of the effectiveness and safety of formoterol/budesonide turbuhaler as physician-guided adjustable maintenance dosing regimen versus formoterol/budesonide given as fixed dose of twice daily therapy in the management of bronchial asthma [Abstract]. European Respiratory Society Annual congress; 2009 Sep 12-16; Vienna, Austria. 1968. [Not an intervention of interest]
- 562. O'Brien CD, Peters SP, Prenner BM, et al. Long-term safety of budesonide/formoterol pressurized metered-dose inhaler (BUD/FM pMDI) in asthma patients: adverse events and asthma exacerbations [Abstract]. American Thoracic Society International Conference; 2007 May 18-23; San Francisco, California. L57p. [Irretrievable]
- 563. O'Brien CD, Peters SP, Prenner BM, et al. Resource use with budesonide/formoterol pressurized metered-dose inhaler (BUD/FM pMDI) versus BUD pMDI in asthma patients [Abstract]. American Thoracic Society International Conference; 2007 May 18-23; San Francisco, California. L58p. [Irretrievable]

- 564. O'Byrne P, Barnes P, Rodriguez-Roisin R, et al. Low dose inhaled budesonide with and without formoterol in steroid free patients with mild persistent asthma [abstract]. Am J Respir Crit Care Med. 2001;163;Suppl 5:A862. [Irretrievable]
- 565. O'Byrne PM, Godard P, Pistolesi M, et al. Single inhaler therapy with budesonide/formoterol improves asthma control compared with fixed dosing with budesonide/formoterol or a higher dose of budesonide alone [Abstract]. American Thoracic Society International Conference; 2004 May 21-26; Orlando, FL. J93p. [Irretrievable]
- 566. O'Callaghan C, Milner AD. Inhaled steroids and recurrent wheeze after bronchiolitis. Lancet. 1989 Jun 24;1(8652):1458. PMID: 2567473. [Not a human study]
- 567. O'Connor TM, Kelly MM, Leigh R, et al. Anti-inflammatory effects of inhaled budesonide combined with formoterol after allergen challenge in subjects with atopic asthma [Abstract]. American Thoracic Society International Conference; 2006 May 19-24; San Diego, California. A75. [Not an intervention of interest]
- 568. Oliver AJ, Covar RA, Goldfrad CH, et al. Randomised trial of once-daily vilanterol in children with asthma on inhaled corticosteroid therapy. Respir Res. 2016;17(1):37. PMID: 27044326. [Not an intervention of interest]
- 569. Oliver AJ, Covar RA, Goldfrad CH, et al. Randomised trial of once-daily vilanterol in children with asthma on inhaled corticosteroid therapy. Respir Res. 2016;17(1):37. DOI: 10.1186/s12931-016-0353-4. [Not an intervention of interest]
- 570. Olsson P, Stallberg B, Ekstrom T, et al. Adjustable maintenance treatment of asthma with budesonide and formoterol in a single inhaler [abstract]. European Respiratory Society Annual Congress; 2002. P2451. [Not an intervention of interest]

- 571. Olsson, Karlsson G, Ekstrom T, et al. Adjustable dosing with budesonide/formeterol in a single inhaler reduces costs compared with a conventional fixed dosing regimen. Eur Respir J. 2003;22;Suppl 45:P2643. [Not an intervention of interest]
- 572. Orr LC, Fowler SJ, Lipworth BJ.
 Relationship between changes in quality of life and measures of lung function and bronchial hyper-responsiveness during high-dose inhaled corticosteroid treatment in uncontrolled asthma. Am J Respir Med. 2003;2(5):433-8. PMID: 14719994. [Excluded study design]
- 573. Ortega-Cisneros M, Maldonado-Alaniz ML, Rosas Vargas MA, et al. Salmeterol and inhaled beclomethasone versus high dose inhaled beclomethasone in the control of pediatric patients with moderate asthma. Ann Allergy Asthma Immunol. 1998;80:131. [Not an intervention of interest]
- 574. Osur S, Chervinsky P, Herie N, et al. Long term effects of fluticasone propionate (FP) inhalation aerosol in subjects with asthma. Am J Respir Crit Care Med. 1998;157;Suppl 3:A405. [Not an intervention of interest]
- 575. Paggiaro P, Nicolini G, Papi A. Extrafine beclomethasone dipropionate/formoterol hydrofluoroalkane-propelled inhaler in asthma. Expert Rev Resp Med. 2008;2(2):161-6. DOI: 10.1586/17476348.2.2.161. [Not a human study]
- 576. Palmer KP, Green TD, Williams LW. Effects of inhaled fluticasone propionate in children less than 2 years old with recurrent wheezing. Pediatrics. 2005;116(2):565-6. [Not a human study]
- 577. Palumbo R, Groth ML. The CAMP asthma study. Clin Pulm Med. 2001;8(3):192-3. [Not a human study]

- 578. Pao CS, McKenzie SA. Randomized controlled trial of fluticasone in preschool children with intermittent wheeze. Am J Respir Crit Care Med. 2002 Oct 1;166(7):945-9. PMID: 12359651. [Not an intervention of interest]
- 579. Papi A, Marku B, Scichilone N, et al. Regular versus as-needed budesonide and formoterol combination treatment for moderate asthma: A non-inferiority, randomised, double-blind clinical trial. Lancet Respir Med. 2015 Feb;3(2):109-19. PMID: 25481378. [Not an intervention of interest]
- 580. Papi A, Nicolini G, Boner AL, et al. Short term efficacy of nebulized beclomethasone in mild-to-moderate wheezing episodes in pre-school children. Ital J Pediatr. 2011;37:39. PMID: 21859484. [Not an intervention of interest]
- 581. Parakh U, Gupta K, Sharma S, et al. A comparative evaluation of the efficacy of inhaled beclomethasone dipropionate, budesonide and fluticasone propionate in the management of bronchial asthma. Indian J Allergy Asthma Immunol. 2004;18(1):33-8. [Not an intervention of interest]
- 582. Parasuraman B, Murphy KR, Pethick N, et al. Budesonide inhalation suspension improves the functional health status of pediatric asthmatic patients. Eur Respir J. 2001;18;Suppl 33:121s. [Not an intervention of interest]
- 583. Parasuraman B, Pethick N, Juniper E, et al. Budesonide inhalation suspension improves quality of life in families of childrem with asthma. J Allergy Clin Immunol. 2001;107(2):S102. [Not an intervention of interest]
- 584. Park J, Lee J, Whang K, et al. The effect of salbutamol and budesonide inhalation therapy in infants with bronchiolitis. J Korean Pediatr Soc. 1997l40(1):45-54. [Not in the target population]

- 585. Patel M, Pilcher J, Beasley R. Combination ICS/fast-onset LABA inhaler as maintenance and reliever therapy: The future for uncontrolled adult asthma?. Expert Rev Respir Med. 2013 Oct;7(5):451-4. PMID: 24138688. [Not a human study]
- 586. Patel M, Pilcher J, Reddel HK, et al. Metrics of salbutamol use as predictors of future adverse outcomes in asthma. Clin Exp Allergy. 2013 Oct;43(10):1144-51. PMID: 24074332. [Not an intervention of interest]
- 587. Patel YA, Patel P, Bavadia H, et al. A randomized, open labeled, comparative study to assess the efficacy and safety of controller medications as add on to inhaled corticosteroid and long-acting beta2 agonist in the treatment of moderate-to-severe persistent asthma. J Postgrad Med. 2010 Oct-Dec;56(4):270-4. PMID: 20935397. [Not an intervention of interest]
- 588. Pauli G, Aubert B. A comparison of inhaled fluticasone propionate with nedocromil in the treatment of moderate adult asthma. A French Study Group. European Journal of Clinical Researach. 1995;7:45-56. [No English language abstract]
- 589. Pearlman D, Kerwin E, Kim K, et al. Fluticasone prorionate HFA-134 A significantly improves asthma control in inhaled corticosteroid dependent asthmatics. Am J Respir Crit Care Med. 2002;165;Suppl 8:A770. [Not an intervention of interest]
- 590. Pearlman DS, Murphy KR, Uryniak T, et al. Safety of budesonide/formoterol pressurized metered dose inhaler (BUD/FM pMDI) in children with asthma previously treated with inhaled corticosteroids (ICSs) [Abstract]. American Thoracic Society International Conference; 2008 May 16-21; Toronto, Canada. A710. [Not an intervention of interest]

- 591. Pearlman DS, Uryniak T, O'Brien CD, et al. Predose forced expiratory flow between 25% and 75% (FEF25-75%) in inhaled corticosteroid (ICS)-dependent patients with mild to moderate or moderate to severe persistent asthma receiving budesonide/formoterol pressurized metered-dose inhaler (BUD/FM pMDI). J Allergy Clin Immunol. 2009;123;2 Suppl 1:S158. [Not an intervention of interest]
- 592. Pedersen S. Budesonide plus formoterol for reliever therapy in asthma. Lancet. 2006 Aug;368(9537):707-8. [Not a human study]
- 593. Pelkonen AS, Hakulinen AL, Hallman M, et al. Effect of inhaled budesonide therapy on lung function in schoolchildren born preterm. Respir Med. 2001 Jul;95(7):565-70. PMID: 11453312. [Not in the target population]
- 594. Pelkonen AS, Malmstrom K, Malmberg LP, et al. Budesonide improves decreased airway conductance in infants with respiratory symptoms. Arch Dis Child. 2009 Jul;94(7):536-41. PMID: 19254906. [Not an intervention of interest]
- 595. Pepys J. Effects of inhaled beclomethasone dipropionate on bronchial provocation test reactions. Postgrad Med J. 1975;51;Suppl 4:42-8. PMID: 812074. [Not a human study]
- 596. Perera BJ. Efficacy and cost effectiveness of inhaled steroids in asthma in a developing country. Arch Dis Child. 1995 discussion 315-6; Apr;72(4):312-5. PMID: 7763062. [Not an intervention of interest]
- 597. Perlman DS, Kent E, Lanz MJ, et al. Fluticasone propionate/salmeterol HFA MDI has a rapid onset of effect in asthmatics treated with short or long-acting beta2-agonists (BA) or inhaled corticosteroids (ICS). Annual Thoracic Society 97th International Conference; 2001 May 18-23; San Francisco CA. A865. [Not an intervention of interest]
- 598. Pescollderungg L, Radetti G, Gottardi E, et al. Inhaled fluticasone in asthmatic children. Ann Allergy Asthma Immunol. 2002 author reply 329; Sep;89(3):328-9. PMID: 12269658. [Not an intervention of interest]

- 599. Peters SP, Prenner BM, Martin P, et al.
 Bronchodilation with budesonide/formoterol
 pressurized metered-dose inhaler (BUD/FM
 pMDI) vs BUD pMDI in asthma patients
 [Abstract]. American Thoracic Society
 International Conference; 2007 May 18-23;
 San Francisco, California. K6p.
 [Irretrievable]
- 600. Peters SP, Prenner BM, Martin P, et al.
 Long-term effects on lung function of
 budesonide (BUD) and formoterol (FM) in
 one pressurized metered-dose inhaler
 (BUD/FM pMDI) and BUD pMDI in
 patients with asthma [Abstract]. American
 Thoracic Society International Conference;
 2007 May 18-23; San Francisco, California.
 K5p. [Irretrievable]
- 601. Peters SP, Bleecker ER, Canonica GW, et al. Serious Asthma Events with Budesonide plus Formoterol vs. Budesonide Alone. New England Journal of Medicine. 2016;Sept;375(9):850-60. PMID: 27579635 [not an intervention of interest]
- 602. Petitto J, Jones SM. Adherence to inhaled corticosteroids: An ancillary study of the childhood asthma management program clinical trial. Pediatrics. 2012;130;Suppl 1:S37-8. DOI 10.1542/peds.2012-2183JJJ. [Not a human study]
- 603. Pharmacotherapy treatment of intermittent asthma with ICSs. Can Med Assoc J. 2005;173;Suppl 6:S33-6. [Not a human study]
- 604. Pieters W, Ringdal N, Aubier M, et al. A new inhaler combination containing salmeterol and fluticasone propionate is well-tolerated in longterm use. Eur Respir J. 1998;12;Suppl 29:20s. [Not an intervention of interest]
- 605. Pizzichini MM, Stirbulov R, Fristcher CC, et al. Efficacy and safety of a combination of budesonide/formoterol in a single capsule in uncontrolled asthma. Am J Respir Crit Care Med. 185:A3970. [Not an intervention of interest]

- 606. Pohl WR, Vetter N, Zwick H, et al. Adjustable maintenance dosing with budesonide/formoterol or budesonide: Double-blind study. Respir Med. 2006 Mar;100(3):551-60. PMID: 16005623. [Not an intervention of interest]
- 607. Ponce CH, Rodrigquez ES, Rodriguez OAR. Administration of budesonide (inhaled steroid) to children to control intermittent asthma. Rev Alerg Mex. 2009;56(1):9-12. [Not in the target population]
- 608. Poulton A, Liu A, Nanan R. Budesonide in preschool-age children with recurrent wheezing. N Engl J Med. 2012 Feb;366(6):570. [Not a human study]
- 609. Prasad R, Bandhu M, Kant S, et al. A comparative study on efficacy of inhaled fluticasone propionate and beclomethasone dipropionate in patients of bronchial asthma. Indian J Allergy Asthma Immunol. 2004;18(2):73-7. [Not an intervention of interest]
- 610. Prenner B, Berkowitz R, Bensch GW, et al. Onset of improvements of lung function with mometasone furoate dry powder inhaler (MF-DPI) in ICS-naive patients with asthma. J Allergy Clin Immunol. 2005;115;Suppl 2:S5. [Not an intervention of interest]
- 611. Prenner BM, Peters SP, Martin P, et al.
 Long-term control of asthma symptoms with
 budesonide/formoterol pressurized metereddose inhaler (BUD/FM pMDI) versus BUD
 pMDI [Abstract]. American Thoracic
 Society International Conference; 2007 May
 18-23; San Francisco, California. L67p.
 [Irretrievable]
- 612. Price D, Haughney J, Duerden M. The effect of switching to beclomethasone extrafine aerosol on symptom-free days. Eur Respir J. 2001;18;Suppl 33:69s. [Not an intervention of interest]

- 613. Price MJ, Mahajan P, Maden C, et al. Impact of inhaled fluticasone propionate on parental sleep disturbance and perception of asthma symptoms in pre-school children. J Allergy Clin Immunol. 1998;101(1(Pt 2)):S151. [Not an intervention of interest]
- 614. Priftis KN, Papadimitriou A, Nicolaidou P, et al. Testing for hypothalamic-pituitary-adrenal axis suppression in asthmatic children. Pediatr Allergy Immunol. 2008;19(5):466-7. [Not a human study]
- 615. Pro-drug improves lung function. Pharm J. 2003 Oct;271(7270):487. [Not a human study]
- 616. Prosperini G, Spicuzza L, Piccillo G, et al. Rapid protective of effect of inhaled fluticasone on airway hyperresponsiveness to AMP in patients with fixed airway obstruction due to asthma but not COPD. Eur Respir J. 2006;28;Suppl 50:670s. [Not an intervention of interest]
- 617. Purello-D'Ambrosio F, Gangemi S, Merendino RA, et al. Fluticasone propionate reduces serum interleukin-8 levels in asthmatic patients. Respiration. 2000;67(3):348. PMID: 10867611. [Not an intervention of interest]
- 618. Pyke SD, Frith L, Pritchard J, et al. Synergy with salmeterol and fluticasone proprionate after administration from a single inhaler (Seretide). Eur Respir J. 2001;18;Suppl 33:176s. [Not a human study]
- 619. Raissy HH, Blake K. As needed use of inhaled corticosteroids for management of mild persistent asthma in children. Pediatr Allergy Immunol Pulmonol. 2011

 Dec;24(4):231-3. [Not a human study]
- 620. Rakes G, Gaston B. Inhaled budesonide in acute asthma? J Pediatr. 2001 Sep;139(3):346-8. PMID: 11562611. [Not a human study]
- 621. Ramirez I, Lumeng CN. Daily and intermittent corticosteroids have similar impact on recurrent wheezing in young children. J Pediatr. 2012;160(5):881. [Not a human study]

- 622. Randolph C. Poor adherence with inhaled corticosteroids for asthma: Can using a single inhaler containing budesonide and formoterol help? J Asthma. 2008;45(4):349. [Not a human study]
- 623. Reddel HK, Jenkins C, Quirce S, et al. Effect of different asthma treatments on risk of cold-related exacerbations. Eur Respir J. 2011 Sep;38(3):584-93. PMID: 21406510. [No outcomes of interest]
- 624. Reddel HK, Peyters MJ, Wark PA, et al. Comparison of the efficacy of Seretide and Flixotide when down-titrating the inhaled corticosteroid dose. Respirology. 2007;12;Suppl 1:A40. [Not an intervention of interest]
- 625. Reddel HK, Ware SI, Marks GB, et al. Effect of starting dose of inhaled budesonide on airway hyperresponsiveness in poorly controlled asthma. European Respiratory Society; 1999 Oct 9-13; Madrid, Spain. 105p. [Irretrievable]
- 626. Reddel HK, Ware SI, Marks GB, et al. Long-term back-titration of inhaled corticosteroids - the effect of starting dose. European Respiratory Society; 1999 Oct 9-13; Madrid, Spain. 106p. [Irretrievable]
- 627. Reddel HK, Yan KY. Single maintenance and reliever therapy (SMART) of asthma. Thorax. 2011 Jan;66(1):86-7. PMID: 21097538. [Not a human study]
- 628. Reddel HK. Increasing the dose of inhaled corticosteroid when asthma deteriorates-does it prevent severe exacerbations?.Pol Arch Med Wewn. 2010 Mar;120(3):64-7. PMID: 20332710. [Not a human study]
- 629. Reijonen T, Korppi M, Kuikka L, et al. Anti-inflammatory therapy reduces wheezing after bronchiolitis. Arch Pediatr Adolesc Med. 1996 May;150(5):512-7. PMID: 8620234. [Not an intervention of interest]

- 630. Reijonen TM, Korppi M. One-year followup of young children hospitalized for wheezing: The influence of early antiinflammatory therapy and risk factors for subsequent wheezing and asthma. Pediatr Pulmonol. 1998 Aug;26(2):113-9. PMID: 9727762. [Not an intervention of interest]
- 631. Reijonen TM, Kotaniemi-Syrjanen A, Korhonen K, et al. Predictors of asthma three years after hospital admission for wheezing in infancy. Pediatrics. 2000 Dec;106(6):1406-12. PMID: 11099596. [Not an intervention of interest]
- 632. Riccioni G, D'Orazio N, Castronuovo M, et al. Dosage tapering of inhalatory budesonide in subjects with mild to moderate persistent asthma treated with montelukast. Eur Respir J. 2003;22;Suppl 45:P713. [Not an intervention of interest]
- 633. Rice-McDonald G, Bowler S, Staines G, et al. Doubling daily inhaled corticosteroid dose is ineffective in mild to moderately severe attacks of asthma in adults. Intern Med J. 2005 Dec;35(12):693-8. PMID: 16313543. [No outcomes of interest]
- 634. Riedler J, Huttegger I. Long-term effect of inhaled corticosteroid and cromoglycate on the bronchial responsiveness in children with asthma. Eur Respir J. 1992;5;Suppl 15:309s. [Not an intervention of interest]
- 635. Robinson WS, Blaiss MS. Randomized trial to evaluate efficacy and safety of combination budesonide and formoterol and new FDA mandate regarding LABAs. Hosp Pract (Minneap). 2010 Jun;38(3):79-81. PMID: 20499777. [Not a human study]
- 636. Robinson WS, Blaiss MS. Randomized trial to evaluate efficacy and safety of combination budesonide and formoterol and new FDA mandate regarding LABAs. Hosp Pract (Minneap). 2010;38(3):79-81. [Not a human study]
- 637. Roche N, Postma DS, Colice G, et al. Differential effects of inhaled corticosteroids in smokers/ex-smokers and nonsmokers with asthma. Am J Respir Crit Care Med. 2015 Apr 15;191(8):960-4. PMID: 25876207. [Not an intervention of interest]

- 638. Rodriguez Santos O, Celio Murillo R. Quality of life in asthmatic children in Cuba and Mexico that use inhaled steroids. Acta Pediatr Esp. 2010;68(3):124-7. [Not an intervention of interest]
- 639. Rogala B, Majak P, Gluck J, et al.
 Asthma control in adult patients treated with a combination of inhaled corticosteroids and long-acting beta2-agonists: a prospective observational study. Polish Archives Of Internal Medicine. 2017;127(2):100-106. PMID: 28220767 [not an intervention of interest]
- 640. Rogers AJ, Tantisira KG, Fuhlbrigge AL, et al. Phenotypic predictors of poor response to inhaled corticosteroids in asthmatic children over four years [Abstract]. American Thoracic Society International Conference; 2007 May 18-23; San Francisco, California. 617p. [Irretrievable]
- 641. Roorda RJ, Mezei G, Bisgaard H, et al. Response of preschool children with asthma symptoms to fluticasone propionate. J Allergy Clin Immunol. 2001 Oct;108(4):540-6. PMID: 11590379. [Not an intervention of interest]
- 642. Rosenhall L, Heinig JH, Lindqvist A, et al. Budesonide and formoterol in a single inhaler is safe and effective in the treatment of asthma. Eur Respir J. 2001;18;Suppl 33:159s. [Not an intervention of interest]
- 643. Rosenhall L, Heinig JH, Lindqvist A, et al. Symbicort (budesonide/formoterol in a single inhaler) is safe and effective in the treatment of asthma. Thorax. 2011;56;Suppl 3:iii63. [Not an intervention of interest]
- 644. Rosenhall L, Lundqvist G, Adelroth E, et al. Comparison between inhaled and oral corticosteroids in patients with chronic asthma. Eur J Respir Dis Suppl. 1982;122;Suppl 122:154-62. PMID: 6958480. [Not an intervention of interest]

- 645. Rosenhall L, Stahl E, Heinig JH, et al. Health-related quality of life and asthma control in patients using symbicort(R) (budesonide and formoterol in a single inhaler). Annual Thoracic Society 97th International Conference; 2001; San Francisco CA. D31p. [Not an intervention of interest]
- 646. Rosenhall L, Stahl E, Heinig JH, et al. Health-related quality of life and asthma control in patients treated with budesonide and formoterol in a single inhaler. Eur Respir J. 2001;18;Suppl 33:46s. [Not an intervention of interest]
- 647. Rosenwasser LJ, Noonan MJ, Martin P, et al. Safety of budesonide and formoterol administered via one pressurized metered dose inhaler (budesonide/formoterol pMDI) in patients (>12 years) with moderate to severe persistent asthma. J Allergy Clin Immunol. 2007;119;Suppl 1:S5. [Not an intervention of interest]
- 648. Rowe BH, Bota GW, Fabris L, et al. Inhaled budesonide in addition to oral corticosteroids to prevent asthma relapse following discharge from the emergency department: A randomized controlled trial. JAMA. 1999 Jun 9;281(22):2119-26. PMID: 10367823. [Not in the target population]
- 649. Rowe BH, Wong E, Blitz S, et al. Adding long-acting beta-agonists to inhaled corticosteroids after discharge from the emergency department for acute asthma: A randomized controlled trial. Acad Emerg Med. 2007 Oct;14(10):833-40. PMID: 17898245. [Not in the target population]
- 650. Rutkowski R, Rutkowski K, Bilbin M, et al. Childhood asthma effect of regular and on demand formoterol with budesonide treatment twice a day. Int Rev Allergol Clin Immunol. 2009;15(3-4):52-8. [Not an intervention of interest]
- 651. Rytila P, Lisa G, Varghese S, et al. Inhaled mometasone benefits adult patients with asthma like symptoms but not fulfilling functional asthma criteria. Eur Respir J. 2007;30;Suppl 51:351s. [Not in the target population]

- 652. Sacks H, Gates D, Kuo WL, et al.
 Assessment of the defined daily dose for mometasone furoate dry powder inhaler in persistent asthma. Eur Respir J. 2003;22;Suppl 45:P335. [Not an intervention of interest]
- 653. Sahu GN, Mania RN, Panigrahi MK, et al. Comparison of inhaled salmeterol and budesonide with salmeterol and fluticasone propionate in patients with moderate to severe asthma. Indian J Allergy Asthma Immunol. 2004;18(2):100-1. [Not an intervention of interest]
- 654. Saito M, Kikuchi Y, Hoshina M. Inhaled high dose budesonide is as effective as systemic corticosteroids for children under three with mild asthma exacerbations. J Allergy Clin Immunol. 2016;137;2 Suppl 1:AB212. Embase 72197446. [Not in the target population]
- 655. Saito T, Hasunuma T. Safety and tolerability of high-dose budesonide/formoterol via turbuhaler in japanese patients with asthma: A randomized, double-blind, crossover, active comparator-controlled, phase III study. Clin Drug Invest. 2012 Jan 1;32(1):51-61. PMID: 22024920. [Not an intervention of interest]
- 656. Saito T, Hasunuma T. Safety and tolerability of high-dose budesonide/formoterol via turbuhaler in Japanese patients with asthma: phase III study results. Am J Respir Crit Care Med. 2011;183;1MeetingAbstracts. [Not an intervention of interest]
- 657. Salvi S. Effect of inhaled formoterol and budesonide on exacerbations of asthma. N Engl J Med. 1998 Apr 9;338(15):1072. PMID: 9537880. [Not a human study]
- 658. Sawicki GS, Strunk RC, Schuemann B, et al. Patterns of inhaled corticosteroid use and asthma control in the childhood asthma management program continuation study. Ann Allergy Asthma Immunol. 2010
 Jan;104(1):30-5. PMID: 20143642. [Not an intervention of interest]

- 659. Schokker S, Kooi EMW, de Vries TW, et al. Inhaled corticosteroids for recurrent respiratory symptoms in preschool children in general practice: Randomized controlled trial. Pulm Pharmacol Ther. 2008;21(1):88-97. PMID: 17350868. [Not an intervention of interest]
- 660. Sears MR, Taylor DR, Print CG, et al. Increased inhaled bronchodilator vs increased inhaled corticosteroid in the control of moderate asthma. Chest. 1992 Dec;102(6):1709-15. PMID: 1446477. [Not an intervention of interest]
- 661. See S, Rubin S. Tapering inhaled steroids effective for chronic asthma. J Fam Pract. 2003 Oct;52(10):748-51. PMID: 14529591. [Not a human study]
- 662. Sehmi R, Wood LJ, Gauvreau GM, et al. Allergen-induced phenotypic changes in bone marrow progenitors from asthmatic subjects: effect of inhaled budesonide. Am J Respir Crit Care Med. 1998;157;Suppl 3:A871. [Not an intervention of interest]
- 663. Sekerel BE, Sackesen C, Tuncer A, et al. The effect of nebulized budesonide treatment in children with mild to moderate exacerbations of asthma. Acta Paediatr. 2005 Oct;94(10):1372-7. PMID: 16299866. [Not in the target population]
- 664. Selroos O, Löfroos A-, Pietinalho A, et al. Asthma control and steroid doses 5 years after early or delayed introduction of inhaled corticosteroids in asthma: a real-life study. Respir Med. 2004;98(3):254-62. [Not an intervention of interest]
- 665. Shah A, Solanki R, Shah K. Effect of add on therapy compared with doubling steroid inhalation in bronchial asthma.

 Thorax;59;Suppl II:ii70. [Not an intervention of interest]
- 666. Shah S. Asthma & COPD SMi's sixth annual conference. IDrugs. 2010;13(6):376-78. [Irretrievable]

- 667. Shah SR, Busse WW, McElhattan J, et al. Efficacy and tolerability of fixed-dose (FD) and adjustable-dose (AD) budesonide/formoterol pressurized metered-dose inhaler (BUD/FM pMDI) and FD fluticasone propionate/salmeterol dry powder inhaler (FP/SAL DPI) within racial groups. J Allergy Clin Immunol. 2009;123;2 Suppl 1:S80. [Not an intervention of interest]
- 668. Shah SR, Busse WW, Somerville L, et al. Asthma control with adjustable-and fixed-dose budesonide/formoterol pressurized metered-dose inhaler (BUD/FM pMDI) and fixed-dose fluticasone/salmeterol dry powder inhaler (FP/SM DPI) [Abstract]. American Thoracic Society International Conference; 2007 May 18-23; San Francisco, California. K4p. [Irretrievable]
- 669. Shamsul AI, Hadzri HM, Noradina AT, et al. Step-down approach in chronic stable asthma; a comparison of reducing dose inhaled formoterol/budesonide with maintaining inhaled budesonide.

 Respirology. 2007;12;Suppl 4:A141. [Not an intervention of interest]
- 670. Shimoda T, Obase Y, Kishikawa R, et al. Impact of inhaled corticosteroid treatment on 15-year longitudinal respiratory function changes in adult patients with bronchial asthma. Int Arch Allergy Immunol. 2013;162(4):323-9. PMID: 24193229. [Not an intervention of interest]
- 671. Shiraishi S, Hirata K, Ohtani K, et al. Inhaled corticosteroid improved the perception of dyspnea during methacholine induced bronchoconstriction and changed the hypoxic ventilatory response in patients with asthma. Eur Respir J. 2002;20;Suppl 38:49s. [Not an intervention of interest]
- 672. Shokker S, Kooi EM, Duiverman EJ, et al. Effectiveness of inhaled corticosteroids in preschool children with recurrent respiratory symptoms in general practice: Asterisk study. Prim Care Respir J. 2006;15(3):186. [Not an intervention of interest]

- 673. Simon RA. Clinical implications of combination therapy on the future of asthma management. Allergy Asthma Proc. 2003;24(2):91-3. [Irretrievable]
- 674. Skoner D, Dunn M, Lee T. Effects of mometasone furoate dry powder inhaler on growth velocity and HPA axis function in children with asthma [abstract]. American Thoracic Society International Conference; 2003. A117p. [Irretrievable]
- 675. Smart BA. Daily or intermittent budesonide in preschool children with recurrent wheezing. Pediatrics. 2012;130;Suppl 1:S39-40. [Not a human study]
- 676. Smith AD, Cowan J, Taylor R. Optimising inhaled corticosteroid (ICS) dose using exhaled nitric oxide (eNO) measurements. Eur Respir J. 2003;22;Suppl 45:P342. [Not an intervention of interest]
- 677. Smith AD, Cowan JO, Brassett KP, et al. Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N Engl J Med. 2005 May 26;352(21):2163-73. PMID: 15914548. [Not an intervention of interest]
- 678. Sole D. Inhaled steroids for young children with recurrent wheezing: Friend or foe? Allergol Immunopathol (Madr). 2009 Mar-Apr;37(2):55-6. PMID: 19445859. [Not a human study]
- 679. Somerville L, Busse WW, Shah SR, et al. Safety of adjustable-dose budesonide (BUD)/formoterol (FM) pressurized metered-dose inhaler (pMDI), fixed-dose (BUD/FM pMDI and fixed-dose fluticasone (FP)/salmeterol (SM) dry powder inhaler (DPI) in asthma patients [Abstract]. American Thoracic Society International Conference; 2007 May 18-23; San Francisco, California. K3p. [Irretrievable]
- 680. Sovijarvi ARA, Haahtela T, Ekroos HJ, et al. Sustained reduction of bronchial hyperresponsiveness with inhaled fluticasone propionate in mild asthma within three days [Abstract]. European Respiratory Soociety Annual Congress; 2002. P1244. [Not an intervention of interest]

- 681. Special circumstances. J Invest Allergol Clin Immunol. 2010;20;Suppl 1:43-9. [Not a human study]
- 682. Spector S, Backer V, Pavord I, et al. Dose-dependent anti-inflammatory effect of inhaled mometasone furoate/formoterol in subjects with asthma and high baseline exhaled nitric oxide and sputum eosinophils. J Allergy Clin Immunol. 2011;127;2 Suppl 1:AB161. [Not an intervention of interest]
- 683. Spector SL, O' Brien CD, Uryniak T, et al. Safety and tolerability of a budesonide/formoterol (BUD/FM) pressurized metered-dose inhaler (pMDI) in black adolescents and adults with moderate to severe persistent asthma. Chest. 2010;138(4):705A. [Not an intervention of interest]
- 684. Spencer DA, Gleeson JG, Price JF. Inhaled budesonide for acute wheeze in infants. Lancet. 1989 Mar 25;1(8639):665. PMID: 2564474. [Not a human study]
- 685. Spicuzza L, Scuderi V, Prosperini G, et al. Acute effect of inhaled fluticasone on airway hyperresponsiveness to adenosine 5'-monophosphate in asthma and in COPD [Abstract]. American Thoracic Society International Conference; 2004 May 21-26; Orlando, FL. K33p. [Irretrievable]
- 686. Spicuzza L, Scuderi V, Prosperini G, et al. Rapid protective effect of inhaled fluticasone on airway hyperresponsiveness to AMP in asthma but not in COPD. J Allergy Clin Immunol. 2004l113;Suppl 2:S266. [Not an intervention of interest]
- 687. Stahl E, Baker J, Pearlman D, et al. QVARA(R)-BAI (HFA-propelled beclomethasone dipropionate in a breath actuated inhaler) reduced the number of asthma exacerbations in moderate asthmatic adolescents and adults [Abstract]. American Thoracic Society International Conference; 2007 May 18-23; San Francisco, California. F78p. [Irretrievable]

- 688. Stallberg B, Naya I, Ekelund J, et al. Reallife use of budesonide/formoterol in clinical practice: a 12-month follow-up assessment in a multi-national study of asthma patients established on single-inhaler maintenance and reliever therapy. Int J Clin Pharmacol Ther. 2015 Jun;53(6):447-55. PMID: 25907171. [Not an intervention of interest]
- 689. Stallberg B, Olsson P, Ekstrom T, et al. Fewer asthma patients experience exacerbations with budesonide/formoterol in a single inhaler using adjustable versus fixed dosing. Eur Respir J. 2003;22;Suppl 45:P2798. [Not an intervention of interest]
- 690. Stallberg B, Olsson P, Jorgensen LA, et al. Budesonide/formoterol adjustable maintenance dosing reduces asthma exacerbations versus fixed dosing. Int J Clin Pract. 2003 Oct;57(8):656-61. PMID: 14627173. [Not an intervention of interest]
- 691. Stanbrook MB. Is daily inhaled steroid use necessary in the treatment of mild persistent asthma? Can Med Assoc J. 2005
 May;172(11):1439. [Not a human study]
- 692. Stempel DA. Montelukast added to inhaled beclomethasone in treatment of asthma. Am J Respir Crit Care Med. 2000 Jul;162(1):331-2. PMID: 10903264. [Not a human study]
- 693. Sterk PJ. Is there a need for higher doses of steroids in moderate asthma? Clin Exp Allergy Suppl Rev. 2001;1(1):39-44. [Not a human study]
- 694. Steroids show benifits in mild asthma. Pharm J. 2003 Mar;270(7242):429. [Not a human study]
- 695. Stockmann C, Reilly CA, Fassl B, et al. Effect of CYP3A5*3 on asthma control among children treated with inhaled beclomethasone. J Allergy Clin Immunol. 2015 Aug;136(2):505-7. PMID: 25825214. [Not an intervention of interest]
- 696. Storms W, Glaet V, Banerji D, et al. RPR 106541 an effective inhaled corticosteroid asthma therapy with minimal side-effects on the HPA axis. Eur Respir J. 1997;10;Suppl 25:175S. [Not an intervention of interest]

- 697. Sudarshan S. Monotherapy vs. combination therapy for the management of mild asthma. Am Fam Phys. 2012;85(6):652. [Not a human study]
- 698. Suissa S, Ernst P. Comparison of inhaled beclomethasone and budesonide. studies of potencies of asthma drugs have methodological limitations. BMJ. 1999 Jul 10;319(7202):126. PMID: 10465595. [Not a human study]
- 699. Sullivan SD, Buxton M, Andersson LF, et al. Budesonide increased symptom free days in patients with recent onset mild asthma at an additional cost of US\$0.42/day. Evid Based Med. 2004 May;9(3):90. [Not a human study]
- 700. Svedmyr J, Nyberg E, Asbrink-Nilsson E, et al. Intermittent treatment with inhaled steroids for deterioration of asthma due to upper respiratory tract infections. Acta Paediatr. 1995 Aug;84(8):884-8. PMID: 7488811. [Not in the target population]
- 701. Syk J, Malinovschi A, Borres M, et al. Reduction of IgE by intensified antiinflammatory treatment in patients with atopic asthma. Allergy. 2014;69;Suppl 99:61. [Not an intervention of interest]
- 702. Syk J, Malinovschi A, Johansson G, et al. Anti-inflammatory treatment of atopic asthma guided by exhaled nitric oxide: A randomized, controlled trial. J Allergy Clin Immunol Pract. 2013 Nov-Dec;1(6):639,48.e1-8. PMID: 24565712. [Not an intervention of interest]
- 703. Syk J, Malinovschi A, Johansson G, et al. Lower incidence of asthma exacerbations with FENO-guided anti-inflammatory treatment: a randomised controlled trial. Eur Respir J. 2012;40:4341. [Not an intervention of interest]
- 704. Syk J, Unden A, Alving K. Relationship between exhaled nitric oxide and IgE sensitisation in patients with asthma: Influence of steroid treatment. Clin Respir J. 2009 Jul;3(3):143-51. PMID: 20298397. [Excluded study design]

- 705. Szefler SJ, Baker JW, Uryniak T, et al.
 Comparative study of budesonide inhalation suspension and montelukast in young children with mild persistent asthma. J Allergy Clin Immunol. 2007
 Nov;120(5):1043-50. PMID: 17983871.
 [Not an intervention of interest]
- 706. Szefler SJ, Carlsson L, Uryniak T, et al. Budesonide inhalation suspension versus montelukast in children aged 2 to 4 years with mild persistent asthma. J Allergy Clin Immunol Pract. 2013 Jan;1(1):58-64. PMID: 24229823. [Not an intervention of interest]
- 707. Szefler SJ, Mitchell H, Sorkness CA, et al. Management of asthma based on exhaled nitric oxide in addition to guideline-based treatment for inner-city adolescents and young adults: A randomised controlled trial. Lancet. 2008 Sep 20;372(9643):1065-72. PMID: 18805335. [Not an intervention of interest]
- 708. Tabachnik E, Zadik Z. Diurnal cortisol secretion during therapy with inhaled beclomethasone dipropionate in children with asthma. J Pediatr. 1991
 Feb;118(2):294-7. PMID: 1993964.
 [Excluded study design]
- 709. Tagaya E, Tamaoki J, Isono K, et al. Role of regular treatment with inhaled corticosteroid or leukotriene receptor antagonist in mild intermittent (step 1) asthma [Abstract]. American Thoracic Society International conference; 2008 May 16-21; Toronto. A70. [Not in the target population]
- 710. Takahashi K, Kotoh N, Soda R, et al. Usefulness of inhaled steroids in steroid-dependent intractable asthma--equivalent dose of oral steroid to inhaled steroid. Arerugi. 1994;43(9):1163-71. [Not an intervention of interest]
- 711. Tal A, Simon G, Vermeulen JH, et al. Symbicort (budesonide and formoterol in a single inhaler) is more effective that budesonide alone in children with asthma. International Paediatric Respiratory and Allergy Congress; 2001. 84-5p. [Not an intervention of interest]

- 712. Tal A, Simon G, Vermeulen JH, et al. The benefit of the new single inhaler product containing both budesonide and formeterol in asthmatic children. Eur Respir J. 2000;16;Suppl 31:384s. [Not an intervention of interest]
- 713. Tal A, Simon G, Vermeulen JH. Symbicort (budesonide and formoterol in a single inhaler) is effective and well tolerated in children with asthma. Annual Thoracic Society 97th International Conference; 2001 May 18-23; San Francisco CA. D29p. [Not an intervention of interest]
- 714. Tashkin D, Chipps B, Brown R, et al.
 Responder analysis evaluating the long-term treatment of budesonide/formoterol pressurized metered-dose inhaler (BUD/FM pmdi) in patients with moderate to severe asthma with versus without fixed airflow obstruction (FAO). Chest. 2013;144;4
 Meeting Abstracts:79A. [Not an intervention of interest]
- 715. Tashkin DP, Chipps BE, Uryniak T, et al. Responder analysis evaluating the effect of budesonide/formoterol pressurized metered-dose inhaler (BUD/FM pMDI) in patients with moderate to severe asthma with versus without fixed airflow obstruction (FAO). J Allergy Clin Immunol. 2013;131(2):AB5. Embase 70984076. [Not an intervention of interest]
- 716. Telenga ED, Kerstjens HAM, ten Hacken NHT, et al. Inflammation and corticosteroid responsiveness in ex-, current- and neversmoking asthmatics. BMC Pulm Med. 2013 Sep;13(1):58. [Not an intervention of interest]
- 717. Teper A, Murphy KR, Meltzer EO, et al. Reduction of relief medication use in children receiving inhaled mometasone fuorate for control of mild persistent asthma. J Allergy Clin Immunol. 2010;125;2 Suppl 1:AB195. [Not an intervention of interest]

- 718. Tereshchenko S, Bychkovskaya S, Nicolay S. "Stepping down" in mild-to-moderate asthmatic children being well controlled while receiving low doses of inhaled corticosteroids (ICS): daily vs. cyclical ICS administration (prospective, randomized, multicentre, open-label trial). Eur Respir J. 2013;42:P4300. [Abstract without full-text]
- 719. Terracciano L, Fiocchi A, Bouygue GR. Beclomethasone and albuterol in mild asthma. N Engl J Med. 2007 Aug 2;357(5):506-7. PMID: 17674456. [Not a human study]
- 720. The use of newer asthma and allergy medications during pregnancy. the American College of Obstetricians and Gynecologists (ACOG) and the American College of Allergy, Asthma and Immunology (ACAAI). Ann Allergy Asthma Immunol. 2000 May;84(5):475-80. PMID: 10830999. [Not a human study]
- 721. Thomas M, Pavord I. Single inhaler maintenance and reliever therapy (SMART) in general practice asthma management: where are we?. Prim Care Respir J. 2012 Mar;21(1):8-10. PMID: 22367253. [Not a human study]
- 722. Thomas M, Prince D. High-dose inhaled corticosteroid versus long-acting beta-agonist addition in asthma. Chest. 2009 May;135(5):1404-5. PMID: 19420216. [Not a human study]
- 723. Thomas M. Long-acting β-agonist step-up therapy is more likely to provide best response, compared to inhaled corticosteroid or leukotriene-receptor antagonist step-up in children with uncontrolled asthma receiving inhaled corticosteroids. Evid -Based Med. 2010;15(6):167-8. [Not a human study]
- 724. Tivenius L, Kiviloog J, Glennow C. Effect of budesonide inhalation on airway obstruction at bronchial allergen provocation after varying lengths of pre-treatment. Allergy. 1984 Nov;39(8):639-40. PMID: 6528960. [Excluded study design]

- 725. Tobin MJ. Asthma, airway biology, and allergic rhinitis in AJRCCM 2000. Am J Respir Crit Care Med. 2001
 Nov;164(9):1559-80. [Not a human study]
- 726. Tobin MJ. Asthma, airway biology, and nasal disorders in AJRCCM 2002. Am J Respir Crit Care Med. 2003 Feb;167(3):319-32. [Not a human study]
- 727. Tobin MJ. Asthma, airway biology, and nasal disorders in AJRCCM 2001. Am J Respir Crit Care Med. 2002
 Mar;165(5):598-618. [Not a human study]
- 728. Tobin MJ. Pediatrics, surfactant, and cystic fibrosis in AJRCCM 2003. Am J Respir Crit Care Med. 2004 Jan;169(2):277-87. [Not a human study]
- 729. Tobin MJ. Pediatrics, surfactant, and cystic fibrosis in AJRCCM 2002. Am J Respir Crit Care Med. 2003 2003 Feb;167(3):333-44. [Not a human study]
- 730. Todd GR. Side-effects of high-dose fluticasone propionate in children. Eur Respir J. 1999 Mar;13(3):707-9. PMID: 10232453. [Not a human study]
- 731. Tofts RPH. Steroids do not improve RSV-related wheeze in children. Thorax. 2009;64(9):769. [Not a human study]
- 732. Toth PP. Montelukast and fluticasone therapy in patients with mild persistent asthma. J Appl Res. 2005;5(3):ii. [Not a human study]
- 733. Trautmann M, Banik N, Jorres RA, et al. Acheivment of total control of asthma in clinical practice using the combination of inhaled salmeterol and fluticasone propionate. Eur Respir J. 2006;28;Suppl 50:616s. [Not an intervention of interest]
- 734. Trautmann M, Banik N, Tews JT, et al. Efficacy of the combination of fluticasone propionate and salmeterol in patients with moderate persistent asthma within a "reallife" setting. Eur J Med Res. 2007 Jun 27;12(6):255-63. PMID: 17666315. [Not an intervention of interest]
- 735. Treatment of asthma in children. J Invest Allergol Clin Immunol. 2010;20;Suppl 1:32-6. [Not a human study]

- 736. Treatment of persistent asthma:

 Novopulmon® 200 novolizer®, conceived to improve compliance with treatment. Eur Ann Allergy Clinical Immunol. 2005

 Apr;37(4):152. [Not a human study]
- 737. Triamcinolone acetonide hydrofluoroalkane inhalation--aventis. Drugs R D. 2002;3(2):141-2. PMID: 12001820. [Not a human study]
- 738. Turcotte H, Boulet LP, Prince FP, et al. Influence of inhaled fluticasone in asthma and asymptomatic airway hyperresponsiveness [Abstract]. American Thoracic Society International Conference; 2007 May 18-23; San Francisco, California. F77p. [Irretrievable]
- 739. Turkas H, Levent E, Ouzulgen IK, et al. Effects of inhaler budesonide and nedocromil sodium on exhaled nitric oxide levels in mild asthmatic patients. Eur Respir J. 1998;12;Suppl 29:63s. [Not an intervention of interest]
- 740. Turpeinen M, Pelkonen AS, Nikander K, et al. Bone mineral density in children treated with daily or periodical inhaled budesonide: The helsinki early intervention childhood asthma study. Pediatr Res. 2010 Aug;68(2):169-73. PMID: 20485203. [Not an intervention of interest]
- 741. Turpeinen M, Pelkonen AS, Selroos O, et al. Continuous versus intermittent inhaled corticosteroid (budesonide) for mild persistent asthma in children--not too much, not too little. Thorax. 2012 Feb;67(2):100-2. PMID: 22038795. [Not a human study]
- 742. Turpeinen M, Raitio H, Pelkonen AS, et al. Skin thickness in children treated with daily or periodical inhaled budesonide for mild persistent asthma. the helsinki early intervention childhood asthma study. Pediatr Res. 2010 Feb;67(2):221-5. PMID: 19858777. [Not an intervention of interest]
- 743. Turpeinen M, Sorva R, Metso T, et al. Inhaled budesonide in adults with asthmanet formation of type I collagen is not decreased. Eur Respir J. 1994;7;Suppl 18:382s. [Not an intervention of interest]

- 744. Turpeinen M, Sorva R. Inhaled beclomethasone dipropionate and growth in children with mild asthma. Am J Respir Crit Care Med. 1996 May;153(5):1726. PMID: 8630627. [Not a human study]
- 745. Turpeinen M. Helsinki early intervention childhood asthma (HEICA) astudy: inhaled budesonide halved the number of asthma exacerbatoins compared with inhaled disodium cromoglycate during 18 months of treatment. Eur Respir J. 2000;16;Suppl 31:311s. [Irretrievable]
- 746. Turton JA, Glasgow NJ, Brannan JD. Feasibility and acceptability of using bronchial hyperresponsiveness to manage asthma in primary care: A pilot study. Prim care respir j. 2012 Mar;21(1):28-34. PMID: 21938353. [Excluded study design]
- 747. Udwadia ZF, Pinto LM. LABAs and asthma: From the SMART study to the SMART approach. Indian J Chest Dis Allied Sci. 2010 Oct-Dec;52(4):191-3. PMID: 21302593. [Not a human study]
- 748. Utiger RD. Differences between inhaled and oral glucocorticoid therapy. N Engl J Med. 1993 Dec 2;329(23):1731-3. PMID: 8232464. [Not a human study]
- 749. Vaessen-Verberne A, Van den Berg N, Brackel H, et al. Salmeterol/fluticasone propionate combination (SFC) versus doubling dose of fluticasone propionate (FP) in children with asthma insufficiently controlled on moderate doses of inhaled corticosteroids [Abstract]. European Respiratory Society Annual Congress; 2010 Sep 18-22; Barcelona, Spain. P2644. [Not an intervention of interest]
- 750. van den Berge M, Luijk B, Bareille P, et al. Fluticasone furoate, a novel inhaled corticosteroid (ICS) provides sustained protection against amp airway hyperresponsiveness (AHR) in mild asthma [Abstract]. European Respiratory Society Annual Congress; 2009 Sep 12-16; Vienna, Austria. 1804. [Not an intervention of interest]

- 751. van der Meer V, van Stel HF, Bakker MJ, et al. Weekly self-monitoring and treatment adjustment benefit patients with partly controlled and uncontrolled asthma: An analysis of the SMASHING study. Respir Res. 2010;11:74. PMID: 20537124. [Not an intervention of interest]
- 752. van der Molen T, Foster JM, Mueller T.

 The effect of ciclesonide or fluticasone propionate on the perception of treatment-related side effects using the self-administered inhaled corticosteroid questionnaire (ICQ) [Abstract]. American Thoracic Society International Conference; 2007 May 18-23; San Francisco, California. L60p. [Irretrievable]
- 753. van Essen-Zandvliet EEM, Hughes MD, Waalkens HJ, et al. The effect of 30 months treatment with an inhaled corticosteroid and an inhaled beta2-agonist on airway responsiveness, airway calibre, bronchodilator response, symtoms and stage of remission in children with asthma. Eur Respir J. 1992;5;Suppl 15:180s. [Not an intervention of interest]
- 754. van Schayck OCP, Haughney J, Aubier M, et al. Do asthmatic smokers benefit as much as non-smokers on budesonide/formoterol maintenance and reliever therapy? results of an open label study. Respir Med. 2012 Feb;106(2):189-96. PMID: 22119455. [Not an intervention of interest]
- 755. Van Schoor J, Joos GF, Pauwels RA. The effects of inhaled fluticasone propionate on metacholine- and Neurokinin A-induced bronchoconstriction in asthmatics. European Respiratory Society; 1999 Oct 9-13; Madrid, Spain. 513s. [Irretrievable]
- 756. Vandenberg R, Tovey E, Love I, et al. Beclomethasone dipropionate. trial of a new inhalational steroid preparation in the treatment of steroid-dependent chronic asthmatics. Med J Aust. 1975 Feb 15;1(7):189-93. PMID: 1128399. [Excluded study design]

- 757. Vandenberg R, Tovey E, Love I, et al. Beclomethasone dipropionate. trial of a new inhalational steroid preparation in the treatment of steroid-dependent chronic asthmatics. Med J Aust. 1975;1(7):189-93. [Excluded study design]
- 758. Vander Leek TK. GOAL: What have we learned? Allergy Asthma Clin Immunol. 2005;1(3):117-9. [Not a human study]
- 759. Varon J. Oral vs inhaled corticosteroids following emergency department discharge of patients with acute asthma. Chest. 2002;121(6):1735-6. [Not a human study]
- 760. Vaz R, Senior B, Morris M, et al. Adrenal effects of beclomethasone inhalation therapy in asthmatic children. J Pediatr. 1982 Apr;100(4):660-2. PMID: 7062222. [Excluded study design]
- 761. Ventura A, Strinati R, Longo G. Systemic effects and inhaled beclomethasone dipropionate. Lancet. 1986 Jun 14;1(8494):1393. PMID: 2872512. [Not a human study]
- 762. Vermeulen JH, Simon G, Tal A, et al. Improved lung function and rapid control achieved with the new single inhaler product containing both budesonide and formeterol in asthmatic children aged 4-17 years. Eur Respir J. 2000;16;Suppl 31:384s. [Not an intervention of interest]
- 763. Vidaurreta SM. Wheezing in infants: Can we separate the wheat from the chaff? Arch Argent Pediatr. 2013;111(3):188-9. [Not a human study]
- 764. Virchow JC. Salmeterol powder provides significantly better benefit than montelukast in asthmatic patients receiving concomitant inhaled corticosteroid therapy. Chest. 2002 Jun;121(6):2083-4. PMID: 12065391. [Not a human study]
- 765. Visser MJ, Brand PLP, Kamps AWA, et al. One year treatment with different schedules of inhaled fluticasone propionate in childhood asthma: effects on lung function and immunological parameters. Annual Thoracic Society 97th International Conference; 2001; San Francisco CA. D29p A846. [Not an intervention of interest]

- 766. Visser MJ, Postma DS, Arends LR, et al. One-year treatment with different dosing schedules of fluticasone propionate in childhood asthma. effects on hyperresponsiveness, lung function, and height. Am J Respir Crit Care Med. 2001 Dec 1;164(11):2073-7. PMID: 11739137. [Not an intervention of interest]
- 767. Visser MJ, Postma DS, Brand PLP, et al. Influence of different dosage schedules of inhaled fluticasone propionate on peripheral blood cytokine concentrations in childhood asthma. Clin Exp Allergy. 2002
 Oct;32(10):1497-503. PMID: 12372131.
 [Not an intervention of interest]
- 768. Visser MJ, van der Veer E, Postma DS, et al. Side-effects of fluticasone in asthmatic children: no effects after dose reduction. Eur Respir J. 2004 Sep;24(3):420-5. [Not an intervention of interest]
- 769. Volovitz B, Bentur L, Finkelstein Y, et al. Effectiveness and safety of inhaled corticosteroids in controlling acute asthma attacks in children who were treated in the emergency department: A controlled comparative study with oral prednisolone. J Allergy Clin Immunol. 1998 Oct;102(4 Pt 1):605-9. PMID: 9802368. [Not in the target population]
- 770. Volovitz B, Bilavsky E, Nussinovitch M. Effectiveness of high repeated doses of inhaled budesonide or fluticasone in controlling acute asthma exacerbations in young children. J Asthma. 2008
 Sep;45(7):561-7. PMID: 18773327.
 [Excluded study design]
- 771. Volovitz B, Nussinovitch M, Finkelstein Y, et al. Effectiveness of inhaled corticosteroids in controlling acute asthma exacerbations in children at home. Clin Pediatr (Phila). 2001 Feb;40(2):79-86. PMID: 11261454. [Excluded study design]

- 772. Volovitz B, Nussinovitch M. Effect of high starting dose of budesonide inhalation suspension on serum cortisol concentration in young children with recurrent wheezing episodes. J Asthma. 2003 Sep;40(6):625-9. PMID: 14579993. [Not an intervention of interest]
- 773. Volovitz B, Nussinovitch M. Inhaled beta2agonists and corticosteroids and the treatment of children with acute asthma attack. Isr Med Assoc J. 2002 Nov;4;SUPPL 11:891-2. [Irretrievable]
- 774. Volovitz B, Soferman R, Blau H, et al.
 Rapid induction of clinical response with a
 short-term high-dose starting schedule of
 budesonide nebulizing suspension in young
 children with recurrent wheezing episodes. J
 Allergy Clin Immunol. 1998 Apr;101(4 Pt
 1):464-9. PMID: 9564798. [Not an
 intervention of interest]
- 775. Von Mutius E, Drazen JM. Choosing asthma step-up care. N Engl J Med. 2010 Mar;362(11):1042-3. [Not a human study]
- 776. Voorend-van Bergen S, Vaessen-Verberne AA, Brackel HJ, et al. Monitoring strategies in children with asthma: A randomised controlled trial. Thorax. 2015 Jun;70(6):543-50. PMID: 25825006. [Not an intervention of interest]
- 777. Vortkamp M, Ederle K, Hader S. Hydrofluoroalkane beclomethasone dipropionate extrafine aerosol efficacy response at reduced dose compared to other inhaled corticosteroids treatment regimens. Eur Respir J. 2001;18;Suppl 33:70s. [Not an intervention of interest]
- 778. Wales JK, Barnes ND, Swift PG. Growth retardation in children on steroids for asthma. Lancet. 1991 Dec 14;338(8781):1535. PMID: 1683962. [Excluded study design]
- 779. Wang CZ, Wang Y, Lin KX, et al.
 Comparison of inhaled corticosteroid
 combined with theophylline and double dose
 inhaled corticosteroid in moderate-severe
 persistent asthma. Eur Respir J.
 2004;24;Suppl 48:127s. [Not an intervention
 of interest]

- 780. Wang JH, Trigg CJ, Manolitsas N, et al. Long-term inhaled beclomethasone dipropionate (BDP) and bronchial inflammation in mild asthma. Eur Respir J. 1993;6;Suppl 17:601s. [Not an intervention of interest]
- 781. Wanich NH, Kaplan. Management of asthma based on exhaled nitric oxide in addition to guideline-based treatment for inner-city adolescents and young adults: a randomised controlled trial. Pediatrics. 2009;124;Suppl 2:S147. DOI: 10.1542/peds.2009-1870OOO. [Not a human study]
- 782. Wanner A, Kumar SD, Brieva JL, et al. Adrenergic-glucocorticoid interactions in the regulation of airway blood flow. Arch Physiol Biochem. 2003;111(4):319-21. [Excluded study design]
- 783. Ward C, Pais M, Reid DW, et al. The effect of 12 months treatment with inhaled fluticasone (FP) on diffuse sub-epitherlial collagen I and III in symptomatic steroid naïve asthmatics. Eur Respir J. 2000;16;Suppl 31:341s. [Excluded study design]
- 784. Ward C, Pais M, Reid DW. The effect of 12 months treatment with inhaled fluticasone propionate (FP) on diffuse subepitherlial collagen I and III in symptomatic steroid naïve asthmatics. Eur Respir J. 2000;16;Suppl 31:341s. [Not in the target population]
- 785. Webb J. High-dose beclomethasone inhaler in the treatment of asthma. Lancet. 1983 Apr 16;1(8329):872. PMID: 6132194. [Not a human study]
- 786. Webb MS, Milner AD, Hiller EJ, et al. Nebulised beclomethasone dipropionate suspension. Arch Dis Child. 1986 Nov;61(11):1108-10. PMID: 3539031. [Not an intervention of interest]
- 787. Weersink EJM, Meijer RJ, Kerstjens HAM, et al. Inhaled fluticasone. Thorax. 2000;55(7):628-9. [Not a human study]

- 788. Weinberger M, Sherman B. Inhaled steroid aerosols and alternate-day prednisone.
 Lancet. 1979 Apr 21;1(8121):871-2. PMID: 86111. [Not a human study]
- 789. Weinberger M. Inhaled corticosteroids for infants. J Pediatr. 2006 Feb;148(2):284-5. PMID: 16492448. [Not a human study]
- 790. Weinberger M. Inhaled steroid aerosols and alternate-day prednisone. Lancet. 1979 Jul 7;2(8132):48-9. PMID: 87931. [Not a human study]
- 791. Weinstein S, Murphy K, White M, et al. Treatment of severe asthma with a new mometasone furoate and formoterol (MF/F) combination administered with a pressurized metered-dose inhaler device. Am J Respir Crit Care Med. 2010;181;Meeting Abstracts:A5411. [Not an intervention of interest]
- 792. Weinstein SF, Berger WE, Noonan M, et al. Prevention of asthma worsening with inhaled mometasone furoate therapy in children. J Allergy Clin Immunol. 2009;123;2 Suppl 1:S66. [Not an intervention of interest]
- 793. Wennergren G, Nordvall SL, Hedlin G, et al. Nebulized budesonide for the treatment of moderate to severe asthma in infants and toddlers. Acta Paediatr. 1996 Feb;85(2):183-9. PMID: 8640047. [Not an intervention of interest]
- 794. Wenzel SE. Efficacy versus effectiveness: Leukotriene receptor antagonists or inhaled corticosteroids. Eur Respir Rev. 2001;11(79):38-40. [Not a human study]
- 795. Westbroek J, Pasma HR, James MH, et al. Inhaled fluticasone propionate and oral zafirlukast in moderate asthma: a clinical and cost comparison. Am J Respir Crit Care Med. 1998;157;3 Suppl:A416. [Not an intervention of interest]

- 796. White M, Scott C, Herrle MR, et al.
 Salmeterol/fluticasone propionate 42/88mcg
 hfa-mdi improves asthma control in
 asthmatics previously treated with short- or
 long-acting beta2-agonists or inhaled
 corticosteroids.Ann Allergy Asthma
 Immunol. 2001;86:81. [Not an intervention
 of interest]
- 797. Wignarajah D, Zheng L, Reid D, et al. Fluticasone priopionate decreases airway vascularity in asthma. Respirology. 2004;9;Suppl 2:A24. [Not an intervention of interest]
- 798. Wilcox JB, Avery GS. Beclomethasone dipropionate corticosteroid inhaler: A preliminary report of its pharmacological properties and therapeutic efficacy in asthma. Drugs. 1973;6(2):84-93. PMID: 4753325. [Not a human study]
- 799. Wildhaber JH, Möller A, Hall GL, et al. Levels of exhaled nitric oxide in recurrently wheezy infants are decreased following inhaled steroid therapy. Schweiz Med Wochenschr. 2000 Apr;130(15):529-34. [Not an intervention of interest]
- 800. Wilken-Jensen K. The effect of inhalations of beclomethasone dipropionate on plasma cortisol levels and growth hormone production. Postgrad Med J. 1975;51(Suppl 4):31-2. PMID: 1105515. [Excluded study design]
- 801. Wilken-Jensen K. The effect of inhalations of beclomethasone dipropionate on plasma cortisol levels and growth hormone production. Postgrad Med J. 1975;51(Suppl 4):31-2. PMID: 1105515. [Not an intervention of interest]
- 802. Williams C. Potency of inhaled corticosteroid fails to predict reduced emergency department visits. Arch Intern Med. 2003 Jan 27;163(2):247-8. PMID: 12546628. [Not a human study]
- 803. Williams DM. What does potency actually mean for inhaled corticosteroids? J Asthma. 2005;42(6):409-17. [Not a human study]

- 804. Wilson AM, Duong M, Pratt B, et al. An assessment of the anti-inflammatory properties of low dose inhaled ciclesonide in asthmatic patients [Abstract]. American Thoracic Society International Conference; 2005 May 20-25; San Diego, CA. C33 Poster: F64. [Not an intervention of interest]
- 805. Wilson E, McKeever T, Hargadon B, et al. Exhaled nitric oxide and inhaled corticosteroid dose reduction in asthma: A cohort study. Eur Respir J. 2014 Dec;44(6):1705-7. PMID: 25142486. [Not an intervention of interest]
- 806. Wilson JW, Robertson CF. Inhaled steroids too much of a good thing?. Med J Aust. 2002 Sep 16;177(6):288-9. PMID: 12225273. [Not a human study]
- 807. Wilson N, Sloper K, Silverman M. Effect of continuous treatment with topical corticosteroid on episodic viral wheeze in preschool children. Arch Dis Child. 1995 Apr;72(4):317-20. PMID: 7763063. [Not an intervention of interest]
- 808. Wilson NM, Silverman M. Treatment of acute, episodic asthma in preschool children using intermittent high dose inhaled steroids at home. Arch Dis Child. 1990
 Apr;65(4):407-10. PMID: 2189367. [No outcomes of interest]
- 809. Wisniewski J, Nowak-Wegrzyn A.
 Comparative study of budesonide inhalation suspension and montelukast in young children with mild persistent asthma.
 Pediatrics. 2008;122;Suppl 4:S219-20. [Not a human study]
- 810. Wohl ME, Majzoub JA. Asthma, steroids, and growth. N Engl J Med. 2000 Oct 12;343(15):1113-4. PMID: 11027747. [Not a human study]
- 811. Wolthers OD, Allen DB. Inhaled corticosteroids, growth, and compliance. N Engl J Med. 2002 Oct 10;347(15):1210-1. PMID: 12374890. [Not a human study]
- 812. Wolthers OD, Juul Riis B, Pedersen S. Bone turnover in asthmatic children treated with inhaled budesonide. Eur Respir J. 1992;5;Suppl 15:311s. [Not an intervention of interest]

- 813. Wolthers OD, Pedersen S. Linear growth in asthmatic school children treated with inhaled budesonide. Eur Respir J. 1992;5;Suppl 15:311s. [Not an intervention of interest]
- 814. Wolthers OD, Pedersen S. Short term linear growth in children with asthma during treatment with inhaled flutiscasone propionate and beclomethasone dipropionate. Eur Respir J. 1992;5;Suppl 15:181s. [Not an intervention of interest]
- 815. Wolthers OD. It is still an open question whether inhaled glucocorticoid-induced effects may reduce adult height. Evid Based Med. 2013 Oct;18(5):195-6. PMID: 23335270. [Not a human study]
- 816. Wolthers OD. Short term growth and hypopituity-adrenal axis function in asthmatic children treated with inhaled beclomethasone dipropionate. Eur Respir J. 2005;26;Suppl 49:A1059. [Not an intervention of interest]
- 817. Wood LJ, Gauvreau GM, Watson RM, et al. Effect of inhaled budesonide on allergen-induced bone marrow eosinophil progenitors in asthmatic subjects. Am J Respir Crit Care Med. 1998;157;Suppl 3:A871. [Not an intervention of interest]
- 818. Wu AC, Li L, Miroshnik I, et al. Outcomes after periodic use of inhaled corticosteroids in children. J Asthma. 2009 Jun;46(5):517-22. PMID: 19544175. [Not an intervention of interest]
- 819. Yan XQ, Dai YR, Ong HX, et al.
 Observation of the efficacy of budesonide dry-powder inhalant in treatment of bronchial asthma. Chinese Journal of New Drugs. 2002;11(7):557-9. [Not an intervention of interest]
- 820. Yanagida N, Tomikawa M, Shukuya A, et al. Budesonide inhalation suspension versus methylprednisolone for treatment of moderate bronchial asthma attacks. World Allergy Organ J. 2015 2015;8(1). [Not in the target population]

- 821. Yoshihara S, Kanno N, Fukuda H, et al. Caregiver treatment satisfaction is improved together with children's asthma control: Prospective study for budesonide monotherapy in school-aged children with uncontrolled asthma symptoms. Allergol intern. 2015 Oct;64(4):371-6. PMID: 26433534. [Excluded study design]
- 822. Youkou A, Hasegawa T, Suzuki K, et al. Influence of obesity on control in asthmatic japanese patients defined by the japanese definition of obesity. Intern Med. 2011;50(18):1911-6. PMID: 21921368. [Excluded study design]
- 823. Yousef E, Hossain J, Mannan S, et al. Early intervention with high-dose inhaled corticosteroids for control of acute asthma exacerbations at home and improved outcomes: A randomized controlled trial. Allergy Asthma Proc. 2012 Nov-Dec;33(6):508-13. PMID: 23394509. [Not an intervention of interest]
- 824. Yu H, Lin H, Zhang X. Budesonide with terbutaline inhalation treatment of asthma care and nursing effect analysis. Chest. 2016;149;4 Suppl 1:A11. [Not an intervention of interest]
- 825. Yuksel B, Greenough A. Preterm infants with recurrent symptoms at follow up and prophlaxis with inhaled beclomethasone. Eur Resp J. 1992;5;Suppl 15:181s. [Not an intervention of interest]
- 826. Zeiger RS, Mauger D, Bacharier LB. The authors reply. N Engl J Med. 2012 Feb;366(6):571. [Not a human study]
- 827. Zetterstrom O, Buhl R, Mellem H, et al. Efficacy and safety of a new single inhaler product containing both budesonide and formoterol in adult asthma. Eur Respir J. 2000;16;Suppl 31:455s. [Not an intervention of interest]
- 828. Zetterstrom O, Buhl R, Mellem H, et al. The new single inhaler product containing both budesonide/formoterol improves asthma control in adults. Eur Respir J. 2000;16;Suppl 31:455s. [Not an intervention of interest]

- 829. Zetterstrom O, Buhl R, Mellem H. Efficacy and safety of symbicort(R) budesonide and formoterol in a single inhaler in adults with asthma. Annual Thoracic Society 97th International Conference; 2001 May 18-23; San Francisco, CA. A863. [Not an intervention of interest]
- 830. Zhang J, Yu C, Holgate ST, et al.
 Variability and lack of predictive ability of asthma end-points in clinical trials. Eur
 Respir J. 2002 Nov;20(5):1102-9. PMID:
 12449161. [Not an intervention of interest]
- 831. Zhang L, Prietsch SOM. Effect of inhaled corticosteroids on linear growth in children with persistent asthma. Paediatr Respir Rev. 2014 2014/12;15(4):322-4. [Not a human study]
- 832. Zhong N, Lin J, Mehta P, et al. Real-life effectiveness of budesonide/formoterol maintenance and reliever therapy in asthma patients across asia: SMARTASIA study. BMC Pulm Med. 2013;13:22. PMID: 23557023. [Excluded study design]
- 833. Zhou X, Hong J, Cheng H, et al.
 Budesonide suspension nebulization
 treatment in chinese pediatric patients with
 cough variant asthma: A multi-center
 observational study. J Asthma. 2016
 May;53(5):532-7. [Not in the target
 population]
- 834. Zielen S, Christmann M, Kloska M, et al. Predicting short term response to anti-inflammatory therapy in young children with asthma. Curr Med Res Opin. 2010 Feb;26(2):483-92. PMID: 20001651. [Not an intervention of interest]
- 835. Zielen S, Rose MA, Bez C, et al.
 Effectiveness of budesonide nebulising
 suspension compared to disodium
 cromoglycate in early childhood asthma.
 Curr Med Res Opin. 2006 Feb;22(2):367-73.
 PMID: 16466609. [Not an intervention of interest]

- 836. Zimmerman B, Tsui F. Can the measurement of serum ECP be used to monitor treatment of childhood asthma with inhaled steroid?. Allergy. 1993 discussion 143-5;48(17 Suppl):129-32. PMID: 8109704. [Excluded study design]
- 837. Zomer-Kooijker K, van der Ent CK, Ermers MJJ, et al. Lack of long-term effects of high-dose inhaled beclomethasone for respiratory syncytial virus bronchiolitis: A randomized placebo-controlled trial. Pediatr Infect Dis J. 2014 Jan;33(1):19-23. PMID: 24346594. [Not an intervention of interest]
- 838. Zomer-Kooijker K, van der Ent K, Ermers M, et al. Effect of high dose inhaled beclomethasone for respiratory syncytial virus bronchiolitis during infancy on lung function and asthma at age 6 A randomised placebo-controlled trial [Abstract]. European Respiratory Society Annual Congress; 2013 Sept 7-11; Barcelona, Spain. A61. [Not an intervention of interest]
- 839. Zomer-Kooijker K, Van Der Ent K, Ermers M, et al. Lack of long-term effects of high-dose inhaled beclomethasone for respiratory syncytial virus bronchiolitis: a randomized placebo-controlled trial. Pediatr Infect Dis J. 2014 Jan;33(1):19-23. [Not an intervention of interest]

LAMA Search

- 1.Afonso A, Schmiedl S, Becker C, et al. A methodological comparison of two European primary care databases and replication in a US claims database: inhaled long-acting beta-2-agonists and the risk of acute myocardial infarction. Eur J Clin Pharmacol. 2016 Sep;72(9):1105-16. PMID: 27216032. [Not an intervention of interest]
- 2.Afonso ASM, Schmiedl S, Becker C, et al. Association between inhaled long-acting beta-2-agonists and the risk of acute myocardial infarction: a methodological comparison of two databases. Pharmacoepidemiol Drug Saf. 2014 Oct;23:390-1. DOI: 10.1002/pds.3701. [Not an intervention of interest]
- 3.Antoniu SA. Aclidinium bromide in experimental asthma. Expert Opin Investig Drugs. 2011 Jun;20(6):871-3. PMID: 21417951. [Not a human study]
- 4.Barnes PJ. Triple inhalers for obstructive airways disease: will they be useful? Expert Rev Respir Med. 2011 Jun;5(3):297-300. PMID: 21702649. [Not a human study]

- 5.Beeh K, Ablinger O, Moroni-Zentgraf P, et al. Tiotropium in asthma: a dose-finding study in adult patients with moderate persistent asthma. Am J Respir Crit Care Med.2013;187:A1283. Embase 71980652. [No outcomes of interest]
- 6.Beeh KM, Ablinger O, MoroniZentgraf P, et al. Once-daily add-on tiotropium: A dose-finding trial in adult patients with moderate persistent asthma. Allergy. 2013;68;Suppl 97:376-7. DOI: 10.1111/all.12251. [No outcomes of interest]
- 7. Beeh K, Moroni-Zentgraf P, Ablinger O, et al. Tiotropium respimat in asthma: a double-blind, randomised, dose-ranging study in adult patients with moderate asthma. Respir Res. 2014 Jun 3;15:61. PMID: 24890738. [No outcomes of interest]

- 8.Beeh KM, Kirsten AM, Dusser D, et al.
 Pharmacodynamics and
 Pharmacokinetics Following Once-Daily
 and Twice-Daily Dosing of Tiotropium
 Respimat(®) in Asthma Using
 Standardized Sample-Contamination
 Avoidance. Journal of Aerosol Medicine
 and Pulmonary Drug Delivery.
 2016;Oct;29(5):406-415. PMID:
 26859538 [not an intervention of interest]
- 9.Bel EH. Tiotropium for asthma-promise and caution. N Engl J Med. 2012 Sep 27;367(13):1257-9. PMID: 22938707. [Not a human study]
- 10.Buhl R, Moroni-Zentgraf P, Cornelissen P, et al. Tiotropium respimat in asthma: evaluation of dosing regimens by comparing once-daily 5 μg with twice-daily 2.5 μg. Am J Respir Crit Care Med. 2014;189:A1309. Embase 72043759. [No outcomes of interest]
- 11.Cates CJ. Safety of tiotropium. BMJ. 2011;342:d2970. DOI: http://dx.doi.org/10.1136/bmj.d2970. [Not a human study]
- 12.Cazzola M, Matera MG, O'Donnell KM. Association of β2-adrenergic agonists and tiotropium: is the combination justified? Arch Bronconeumol. 2005;41;suppl 2:24-31. [Not a human study]
- 13.Chung KF. Tiotropium as an add-on therapy in patients with symptomatic asthma. Lancet Respir Med. 2015 May;3(5):331-3. PMID: 25682231. [Not a human study]
- 14.Colice GL. Getting back to the basics: administering inhaled bronchodilators. Respir Care. 2009;54(4):455-7. PMID: 19327178. [Not a human study]
- 15.Curfman GD, Morrissey S, Drazen JM. Products at risk. N Engl J Med. 2010 Oct 28;363(18):1763. PMID: 20979478. [Not a human study]

- 16.Cydulka RK, Emerman CL. Effects of combined treatment with glycopyrrolate and albuterol in acute exacerbation of asthma. Ann Emerg Med. 1994 Feb;23(2):270-4. PMID: 8304607. [Not in the target population]
- 17.Derom E, Van Durme Y, Salhi B, et al. Assessments of protective effects of tiotropium bromide against methacholine-and neurokinin A-induced bronchoconstriction in patients with asthma. Eur Respir J. 2011;38;Suppl 55:p872. [No outcomes of interest]
- 18.Derom E, Van Durme Y, Salhi B, et al. Tiotropium bromide protects against methacholine-, but not against neurokinin A-induced bronchoconstriction in patients with asthma: a randomized, double-blind, placebo-controlled, crossover study. Am J Respir Crit Care Med. 2011;183:A4500. Embase 70848807. [No outcomes of interest]
- 19.Domingo C. Ultra-LAMA, ultra-LABA, ultra-inhaled steroids? The future has landed. Arch Bronconeumol. 2013 Apr;49(4):131-4. PMID: 23415574. [Not a human study]
- 20.Emerman CL, Cydulka RK. Changes in serum catecholamine levels during acute bronchospasm. Ann Emerg Med. 1993 Dec;22(12):1836-41. PMID: 8239104. [Not in the target population]
- 21.Fardon T, Haggart K, Lee DKC, et al. A proof of concept study to evaluate stepping down the dose of fluticasone in combination with salmeterol and tiotropium in severe persistent asthma. Respir Med. 2007 Jun;101(6):1218-28. PMID: 17178217. [No outcomes of interest]
- 22.Feshchenko Y, Iashyna L, Moskalenko S, et al. Clinical-functional effectiveness of different regimens of basic treatment in severe bronchial asthma patients. Allergy. 2014;69:517. DOI: 10.1111/all.12478. [Abstract without full-text]

- 23.Gilman MJ, Meyer L, Carter J, et al. Comparison of aerosolized glycopyrrolate and metaproterenol in acute asthma. Chest. 1990 Nov;98(5):1095-8. PMID: 2225951. [Not in the target population]
- 24.Haggart K, Fardon TC, Lee DKC, et al. Stepping down inhaled steroids in severe asthma with long acting bronchodilators: utilising effort dependent and independent measures of pulmonary function. Thorax. 2004 Dec;59;Suppl II:ii72-3. [No outcomes of interest]
- 25.Hansel TT, Neighbour H, Erin EM, et al. Glycopyrrolate causes prolonged bronchoprotection and bronchodilatation in patients with asthma. Chest. 2005 Oct;128(4):1974-9. PMID: 16236844. [Not an intervention of interest]
- 26.Higashi A, Zhu S, Stafford RS, et al. National trends in ambulatory asthma treatment, 1997-2009. J Gen Intern Med. 2011 Dec;26(12):1465-70. PMID: 21769507. [Excluded study design]
- 27.Hoshino M, Ohtawa J, Akitsu K. Effects of the addition of tiotropium on airway dimensions in symptomatic asthma. Allergy and asthma proceedings. 2016;37(6):e147-e153. PMID: 27931291 [no outcomes of interest]
- 28.Huang J, Chen Y, Long Z, et al. Clinical efficacy of tiotropium in children with asthma. Pak J Med Sci. 2016;32(2):462-5. PMID: 27182262. [Not in the target population]
- 29.Iwamoto H, Yokoyama A, Shiota N, et al. Tiotropium bromide is effective for severe asthma with noneosinophilic phenotype. Eur Respir J. 2008
 Jun;31(6):1379-80. PMID: 18515562.
 [Excluded study design]
- 30.Izco-Basurko I. Novelties in the treatment and management of thoracic disorders. Drug News Perspect. 2008 Sep;21(7):391-402. PMID: 19259552. [Not a human study]

- 31.Jara M, Wentworth III C, Lanes S. A new user cohort study comparing the safety of long-acting inhaled bronchodilators in COPD. BMJ Open. 2012 May 22;2(3):pii:e000841. PMID: 22619266. [Not in the target population]
- 32.Jara M, Lanes SF, Wentworth C3, et al. Comparative safety of long-acting inhaled bronchodilators: a cohort study using the UK THIN primary care database. Drug Saf. 2007;30(12):1151-60. PMID: 18035867. [Not in the target population]
- 33.Johnson BE, Suratt PM, Gal TJ, et al. Effect of inhaled glycopyrrolate and atropine in asthma precipitated by exercise and cold air inhalation. Chest. 1984 Mar;85(3):325-8. PMID: 6697786. [Not in the target population]
- 34.Kerstjens HA. Tiotropium improved lung function and delayed exacerbations in poorly controlled asthma. Ann Intern Med. 2012;157(12):J6-3. Embase 2012743126. [Not a human study]
- 35.Kerstjens HAM, Disse B, Schroder-Babo W, et al. Tiotropium improves lung function in patients with severe uncontrolled asthma: a randomized controlled trial. J Allergy Clin Immunol. 2011 Aug;128(2):308-14. PMID: 21636120. [No outcomes of interest]
- 36.Kerstjens HAM, Moroni-Zentgraf P. Bronchodilator reversibility and cardiac considerations with use of tiotropium. Lancet Respir Med. 2015 Aug;3(8):e25-6. PMID: 26282477. [Not a human study]
- 37.Kerstjens HAM, Moroni-Zentgraf P, Bateman ED. Tiotropium in asthma authors' reply. Lancet Respir Med. 2015 May;3(5):e17. PMID: 25969363. [Not a human study]
- 38.Korelitz JJ, Zito JM, Gavin NI, et al. Asthma-related medication use among children in the United States. Ann Allergy Asthma Immunol. 2008 Mar;100(3):222-9. PMID: 18426141. [Excluded study design]

- 39.Kuziemski K. Which dry powder inhaler should be chosen? Respiration. 2009;78(3):356. PMID: 19602872. [Not a human study]
- 40.Lane M. Tiotropium bromide in asthma patients: an alternative to inhaled longacting beta-agonists? J R Coll Physicians Edinb. 2010 Dec;40(4):321-2. PMID: 21132141. [Not a human study]
- 41.Lee LA, Briggs A, Edwards LD, et al. A randomized, three-period crossover study of umeclidinium as monotherapy in adult patients with asthma. Respir Med. 2015 Jan;109(1):63-73. PMID: 25464907. [Not an intervention of interest]
- 42.Limaye S, Kodgule R, Raskar S, et al. Single dose of of tiotropium bromide (18 mcg) produces a similar bronchodilator response as two doses of formoterol fumarate (12 mcg) over 24 hours in subjects with moderate-to-severe asthma [P1193]. Presented at: European Respiratory Society Annual Congress. 2010 Sep 19; Barcelona, Spain. [Not an intervention of interest]
- 43.Lipworth B. Tiotropium in asthma. Lancet Respir Med. 2015 May;3(5):e16-7. PMID: 25969362. [Not a human study]
- 44.Lommatzsch M, Julius P, Virchow JC. Tiotropium step-up therapy in asthma. N Engl J Med. 2011 Feb 10;364(6):578-9. PMID: 21306255. [Not a human study]
- 45.Magnussen H, Bugnas B, van Noord J, et al. Improvements with tiotropium in COPD patients with concomitant asthma. Respir Med. 2008
 Jan;102(1):50-6. PMID: 17920256. [Not in the target population]

- 46.Mariotti F, Ciurlia G, Spaccapelo L, et al. A two-period open-label, single-dose crossover study in healthy volunteers to evaluate the drug-drug interaction between cimetidine and inhaled extrafine CHF 5993. Eur J Drug Metab Pharmacokinet. 2016 May 21. Epub 2016 May 21. PMID: 27209586. [Not in the target population]
- 47.Miller DR, Chetty M, Currie GP. Tiotropium step-up therapy in asthma. N Engl J Med. 2011 Feb 10;364(6):578-9. PMID: 21306256. [Not a human study]
- 48.Mundy C, Kirkpatrick P. Tiotropium bromide. Nat Rev Drug Discov. 2004 Aug;3(8):643-4. PMID: 15317149. [Not a human study]
- 49.Nair GB, Spiegler P. Role of anticholinergics in the treatment of asthma. Clin Pulm Med. 2011;18(2):95-6. DOI:0.1097/CPM.0b013e31820e2a70. [Not a human study]
- 50.Norris AA. 15th Annual Congress of European Respiratory Society. Expert Opin Invest Drugs. 2006;15(2):185-8. DOI: 10.1517/13543784.15.2.185. [Not a human study]
- 51.O'Connor BJ, Towse LJ, Barnes PJ.
 Prolonged effect of tiotropium bromide
 on methacholine-induced
 bronchoconstriction in asthma. Am J
 Respir Crit Care Med. 1996 Oct;154(4 Pt
 1):876-80. PMID: 8887578. [Not in the
 target population]
- 52.Park H, Yang M, Park C, et al. Additive role of tiotropium in severe asthmatics and Arg16Gly in ADRB2 as a potential marker to predict response. Allergy. 2009 May;64(5):778-83. PMID: 19183167. [Not an intervention of interest]
- 53.Peters SP. Tiotropium plus beclomethasone was more effective than doubling beclomethasone for asthma. Ann Intern Med. 2011;154(4):J2-4. Embase 2011097331. [Not a human study]

- 54.Peters SP. Tiotropium bromide triple combination therapy improves lung function and decreases asthma exacerbations. Evid Based Med. 2013 Oct;18(5):179. PMID: 23349214. [Not a human study]
- 55.Peters SP, Kunselman SJ, Icitovic N, et al. Tiotropium bromide step-up therapy for adults with uncontrolled asthma. N Engl J Med. 2010 Oct 28;363(18):1715-26. PMID: 20979471. [Duplicate]
- 56.Prescott LM, Prescott SL. 101st International Conference of the American Thoracic Society. P&T. 2005 Aug;30(8):467-70. [Not a human study]
- 57. Price D, Kaplan A, Jones R, et al. Longacting muscarinic antagonist use in adults with asthma: real-life prescribing and outcomes of add-on therapy with tiotropium bromide. J Asthma Allergy. 2015;8:1-13. PMID: 25609985. [Not in the target population]
- 58.Price D, West D, Brusselle G, et al. Management of COPD in the UK primary-care setting: An analysis of real-life prescribing patterns. Int J Chron Obstruct Pulmon Dis. 2014;9:889-904. PMID: 25210450. [Not in the target population]
- 59. Quijada C, Venegas M, Bernardine H. How long should tiotropium bromide be suspended before methacholine challenge? Eur Respir J. 2006;28;Suppl 50:218s. [No outcomes of interest]
- 60.Ranaweera A. The 102nd Annual Conference of the American Thoracic Society. Int J Pharm Med. 2006;20(4):263-8. [Not a human study]
- 61.Sayal P, Adhikari T, Vijayan VK. The effects of inhaled tiotropium bromide on lung inflammation in bronchial asthma. Chest. 2007;132(4_MeetingAbstracts):509a. DOI:

10.1378/chest.132.4_MeetingAbstracts.5 09a. [Abstract without full-text]

- 62. Schelfhout V, Joos G, Garcia Gil E, et al. Bronchodilator/bronchoprotective effects of aclidinium bromide a novel long acting anticholinergic a phase 1 study. Eur Respir J. 2007;30;Suppl 51:356s. [Not in the target population]
- 63.Schroeckenstein DC, Bush RK, Chervinsky P, et al. Twelve-hour bronchodilation in asthma with a single aerosol dose of the anticholinergic compound glycopyrrolate. J Allergy Clin Immunol. 1988 Jul;82(1):115-9. PMID: 3392363. [Not an intervention of interest]
- 64.Self T, Joe R, Kellerman A. Glycopyrrolate for asthma. Am J Emerg Med. 1992 Jul;10(4):395-6. PMID: 1616535. [Not a human study]
- 65.Sen IM, Ahuja V. Theophylline: A drug of caution. J Anaesthesiol Clin Pharmacol. 2007;23(4):433-4. [Excluded study design]
- 66.Shah S. Asthma & COPD SMi's Sixth Annual Conference. IDrugs. 201;13(6):376-8. [Not a human study]
- 67.Slats AM, Janssen K, de Jeu R, et al.

 The effect of tiotropium bromide on deep inspiration-induced bronchodilation and airway responsiveness in asthma.

 Am J Respir Crit Care Med.
 2009;179:A2427. DOI:
 http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_MeetingAbstract s.A2427. [No outcomes of interest]
- 68.Sposato B, Bruno S, Barzan R, et al.
 Comparison of the protective effect
 amongst anticholinergic drugs on
 methacholine-induced
 bronchoconstriction in asthma. J
 Asthma. 2008 Jun;45(5):397-401.
 PMID: 18569233. [Not an intervention
 of interest]

- 69.Sridevi K, MohanaRao V, Vijaya N, et al. Safety and efficacy of tiotropium bromide in bronchial asthma and COPD patients, cross over studies by placebo. Int J Life Sci Biotechnol Pharma Res. 2012;1(4):250-62. Embase 2013173434. [Not in the target population]
- 70.Storms WW. Exercise-induced bronchospasm. Curr Sports Med Rep. 2009;8(2):45-6. PMID: 19276902. [Not a human study]
- 71.Suffredini AF, Masur H, Lynch JP. Update in pulmonary and critical care medicine. Ann Intern Med. 2010 May 4;152(9):601-8. PMID: 20410448. [Not a human study]
- 72.Terzano C, Petroianni A, Ricci A, et al. Early protective effects of tiotropium bromide in patients with airways hyperresponsiveness. Eur Rev Med Pharmacol Sci. 2004 Nov-Dec;8(6):259-64. PMID: 15745385. [Not an intervention of interest]
- 73. Timmer W, Moroni-Zentgraf P, Cornelissen P, et al. Once-daily tiotropium respimat 5 µg is an efficacious 24-h bronchodilator in adults with symptomatic asthma. Respir Med. 2015 Mar;109(3):329-38. PMID: 25661281. [No outcomes of interest]
- 74.Tochino Y, Kanazawa H, Ichimaru Y, et al. Nɛ-(carboxymethyl)lysine, a major advanced glycation end product in exhaled breath condensate as a biomarker of small airway involvement in asthma. J Asthma. 2007
 Dec;44(10):861-6. PMID: 18097864.
 [Not an intervention of interest]
- 75. Vogelberg C, Engel M, MoroniZentgraf P, et al. O05-once-daily tiotropium in adolescents with symptomatic asthma despite inhaled corticosteroid treatment: a dose-ranging study. Clin Transl Allergy. 2014;4;Suppl 1:O5. DOI: 10.1186/2045-7022-4-S1-O5. [No outcomes of interest]

- 76.Vogelberg C, Engel M, Moroni-Zentgraf P, et al. Tiotropium in asthmatic adolescents symptomatic despite inhaled corticosteroids: A randomised doseranging study. Respir Med. 2014 Sep;108(9):1268-76. PMID: 25081651. [No outcomes of interest]
- 77. Vogelberg C, LeonaviciuteKlimantaviciene M, Vevere V, et al. Dose-ranging study of tiotropium as treatment for moderate persistent asthma in adolescents. Allergo J. 2013 Sep 7;22 (6):389. Embase 71405612. [No outcomes of interest]
- 78. Vogelberg C,
 LeonaviciuteKlimantaviciene M, Vevere V, et al. Dose-ranging study of tiotropium as treatment for moderate persistent asthma in adolescents. Am J Respir crit Care Med. 2012;185:A4069. Embase 71988705. [No outcomes of interest]
- 79.Vogelberg C, Moroni-Zentgraf P, Leonaviciute-Klimantaviciene M, et al. A randomised dose-ranging study of tiotropium respimat in children with symptomatic asthma despite inhaled corticosteroids. Respir Res. 2015 Feb 4;16:20. PMID: 25851298. [Not in the target population]
- 80. Walker FB4, Kaiser DL, Kowal MB, et al. Prolonged effect of inhaled glycopyrrolate in asthma. Chest. 1987 Jan;91(1):49-51. PMID: 3792086. [Not an intervention of interest]
- 81.Wark P. ACP journal club. Tiotropium reduced exacerbations more than salmeterol in moderate-to-very severe COPD. Ann Intern Med. 2011 Jul 19;155(2):JC1-3. PMID: 21768569. [Not a human study]
- 82. Wenzel SE. Tiotropium for severe asthma: a step forward or more of the same? Pol Arch Med Wewn. 2012;122(11):525-6. PMID: 23207413. [Not a human study]

- 83. Yaqub F. 2013 American Thoracic Society International Conference. Lancet Respir Med. 2013 Jul;1(5):359. PMID: 24429194. [Not a human study]
- 84. Yoshida M, Inoue H, Iwanaga T. Effects of tiotropium on lung function in severe asthmatics with or without emphysematous changes. Am J Respir Crit Care Med. 2012;185:A3962. DOI: http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_MeetingAbstract s.A3962. [Not an intervention of interest]
- 85. Yoshida M, Nakano T, Fukuyama S, et al. Effects of tiotropium on lung function in severe asthmatics with or without emphysematous changes. Pulm Pharmacol Ther. 2013 Apr;26(2):159-66. PMID: 23073336. [Not an intervention of interest]

- 86.Glycopyrronium bromide for chronic obstructive pulmonary disease. Aust Prescr 2014;37:64-71. DOI: 10.18773/austprescr.2014.027. [Not a human study]
- 87. Spiriva: A new drug treatment for asthma? Tiotropium (spiriva), a drug prescribed for chronic obstructive pulmonary disease (COPD), may provide effective preventive care for individuals with moderate to severe asthma. Johns Hopkins Med Lett Health After 50. 2011 Jul;23(5):3. PMID: 27024143. [Not a human study]
- 88.Asian Pacific Society of Respirology 19th Congress. Respirology. 2014 Nov;19;Suppl S3:1-270. Embase 71678388. [Abstract without full-text]

Appendix C. Study Characteristics

Table C-1. Study and population characteristics for KQ1a

Study, Year, Acronym n, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age [mean (SD)]	Males (%)	Parent w/ asthma (%)	Atopy (%)	hand smoke (%)	Systemic corti- costeroid in last 12m (%)	Hospital- ized in last 12m (%)	ICS dose during study (μg/d) [mean (SD)]
Svedmyr, 1999 ⁴⁸ n=55 RCT,12m or 6 treatments	1-3 years of age w/≥3 episodes of wheezing w/URTI, asthma symptoms during last 2 airway infections and no symptoms inbetween URTI; physician's diagnosis of wheezy bronchitis or asthma	Budesonide 400µg QID x3d then 400µg BID x7d (MDI), initiated by the parent at first sign of URTI n=28	25m (12 to 47) ^b	60.7	NR	25.0°	7.1 ^d	NR	1.2 (0 to 4) ^{b,e}	NR
Unclear	SABA and theophylline use allowed when needed; fixed dose cromoglycate was allowed ^a	Placebo MDI x10d initiated by the parent at first sign of URTI n=27	26m (13 to 47) ^b	77.8	NR	22.2°	7.4 ^d	NR	1.1 (0 to 3) ^{b,e}	NR
Ghirga, 2002 ⁴⁶ n=26 RCT, until 4 URTIs ^f	7-12 months old, history of recurrent wheezing during URTI w/at least 2-3 airway infections causing wheezing	Beclomethasone 400µg TID (neb) x5d initiated by parent w/very early phase of URTI before any sign of wheezing ⁹ n=13	8.2m (1.6)	69.2	NR	NR	NR	NR	NR	NR
Medium		No preventative treatment w/URTI n=13			NR	NR	NR	NR	NR	NR
Bacharier, 2008 ⁴⁴ AIMS n=143 RCT, 12m	12-59 months old w/≥2 episodes of wheezing in context of RTI within past year ^h , 1 in the past 6 months and 1 documented by a healthcare provider	Budesonide 1mg BID (neb) x7d initiated by parent at the first sign of RTI n=96	36.7m (13.5)	72.9	41.7	44.8 ^j	4.2 ^k	1=21.9 2=26.0 3=8.3 4+=3.1	8	NR

Study, Year, Acronym n, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age [mean (SD)]	Males (%)	Parent w/ asthma (%)	Atopy (%)	2 nd hand smoke (%)	Systemic corti- costeroid in last 12m (%)	Hospital- ized in last 12m (%)	ICS dose during study (μg/d) [mean (SD)]
Low	All patients received albuterol QID while awake + PRN for 48h then PRN; oral corticosteroids were available at home ⁱ	Placebo x7d initiated at the first sign of RTI n=47	35.7m (13.7)	48.9	53.2	44.7 ^j	1.7 ^k	1=27.7 2=17.0 3=4.3 4+=4.3		NR
Ducharme, 2009 ⁴⁵ n=129 RCT, 12m	1-6 years old w/≥3 wheezing episodes in lifetime seemingly triggered exclusively by URTI with no symptoms in between, with at least 1 course of rescue systemic corticosteroid in prior 6m or 2 in prior 12m	Fluticasone 750µg BID (MDI) initiated by parent at first sign of URTI until 48h without cough or wheeze n=62	2.60y (1.09)	52	19 ^l	10 ^m	In utero: 18 In home: 23	2.3 (1.1) ⁿ	47	50 (39 to 91)°
Low	All patients received albuterol 200-400µg q4h PRN for cough, wheeze and dyspnea	Placebo initiated by parent at first sign of URTI until 48h without cough or wheeze n=67	2.86y (1.20)	69	18 ¹	12 ^m	In utero: 13 In home: 21	2.4 (1.4) ⁿ	52	NR
Papi, 2009 ⁴⁷ BEST- children n=276 RCT, 12w	1-4 years old with frequent wheeze (≥3 episodes requiring medical attention) referred to specialist centers because of further episode of wheezing in addition to the 3 required	Beclomethasone/ salbutamol 800/1600µg PRN (neb) for symptom relief n=110	2.26y (0.79)	61.8	NR	NR	NR	NR	NR	15.1 (21.5)
Low		Beclomethasone 400µg BID (neb) + salbutamol 2500µg PRN (neb) for symptom relief n=110	2.35y (0.81)	58.2	NR	NR	NR	NR	NR	66.8 (6.8) ^p

Study, Year, Acronym n, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age [mean (SD)]	Males (%)	Parent w/ asthma (%)	Atopy (%)	2 nd hand smoke (%)	Systemic corti- costeroid in last 12m (%)	Hospital- ized in last 12m (%)	ICS dose during study (μg/d) [mean (SD)]
		Salbutamol 2500µg PRN (neb) for symptom relief n=56	2.29y (0.78)	60.7	NR	NR	NR	NR	NR	NR
Zeiger, 2011 ⁴⁹ MIST n=278 RCT, 52w	12-53 months old w/positive mAPI and history of ≥4 wheezing episodes in the prior year with ≥1 physician diagnosed or ≥3 wheezing episodes in the prior year with ≥3 months of asthma controller therapy in the prior year	Placebo once daily (neb) + budesonide 1mg BID (neb) x7d at RTI onset n=139	2.9y (0.9)	73.4	64.9	59.9 ^q	39.6 ^r	79.1	18.7	45.7 (38.9 to 52.8)
	All patients received albuterol QID while awake for the first 48h + PRN	Budesonide 500µg (neb) once daily + placebo neb for RTI n=139	2.9y (0.9)	64.7	63.7	56.8 ^q	42.4 ^r	71.9	19.4	149.9 (140.1 to 159.6)

Abbreviations: BID=twice daily; CI=confidence interval; d=day; h=hour; ICS=inhaled corticosteroid; m=month; IQR=interquartile range; mAPI=modified Asthma Predictive Index; MDI=metered dose inhaler; mg=milligram; n=patient sample size; neb=nebulized; NR=not reported; PRN=pro re nata (i.e., as needed); Q=every; QID=four times daily; RCT=randomized controlled trial; RTI=respiratory tract infection; SABA=short-acting β_2 -agonist; SD=standard deviation; TID=three times daily; URTI=upper respiratory tract infection; μ g=microgram; y=year

^aTreatment with cromoglycate was 17.9% in the budesonide arm and 22.2% in the placebo arm

^bData reported as mean (range)

^cRepresents positive skin prick test

^dRepresents parents smoking indoors

^eRepresents number of hospital admissions due to asthma

Patients were not enrolled for a finite time period, but completed the study after 4 URTIs

gAt least 2 of 3 URTI signs were to be present before starting medication (nasal discharge, coughing and fever). Treatment was stopped if all signs of URTI disappeared within 24h hIn an effort to include children with prior moderate-to-severe wheezing episodes, children were required to have experienced either 2 urgent care visits for acute wheezing within the past year, 2 wheezing episodes for which oral corticosteroids were prescribed, or 1 episode requiring urgent care and 1 episode requiring oral corticosteroids

ⁱA course of prednisolone was considered if at any point the child had symptoms that did not improve after 3 SABA treatments administered every 15 minutes, if the child needed SABA more than 6 neb treatments or more than 12 puffs/d for >24h, moderate-severe cough or wheeze for at least 5 of the preceding 7 days was present or at physician discretion. The prednisolone course was 2mg/kg/d (maximum 60mg/d) x2d followed by 1mg/kg/d (maximum 30mg/d) x2 d

^jRepresents positive aeroallergen skin test

Table C-2. Study level outcomes for KQ1a, intermittent ICS with as-needed SABA vs. ICS controller with as-needed SABA

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma Control	Quality of Life	Healthcare Utilization
Svedmyr, 1999 ⁴⁸ n=55 RCT, 12m or 6 treatments	Age: 0-4y ICS dose: Budesonide 400µg QIDx3d then BIDx7d vs. PRN SABA	Required oral corticosteroid course: RR 0.90 (0.44 to 1.85) Asthma-related ER visit: RR 0.83 (0.44 to 1.58) Hospital admission due to asthma: RR 2.50 (0.53 to 11.74) Number of ER admissions for asthma: 16 vs. 23 Number of hospital admissions for asthma: 6 vs. 2 Total number of oral corticosteroid courses: 14 vs. 17	NR	Composite measures: NR Spirometry: NR	NR	NR

^kRepresents exposure at home or daycare

¹Represents maternal asthma

^mRepresents food or drug allergy, allergies to aeroallergens documented by positive skin test or IgE were excluded

ⁿRepresents courses of systemic corticosteroids in the past year, data reported as mean (SD)

^oRepresents cumulative dose of fluticasone used (mg) per patient-month of observation, data reported as median (IQR)

PBeclomethasone dipropionate equivalent dose in mg

^qRepresents sensitivity to any aeroallergen

Represents smoke exposure from birth

sRepresents cumulative dose (mg) over study course, data reported as mean (95% CI)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma Control	Quality of Life	Healthcare Utilization
Bacharier, 2008 ⁴⁴ n=143 RCT, 12m	Age: 0-4y ICS dose: Budesonide 1.0mg BID (high) x7d vs. PRN SABA	Required oral corticosteroid course: RR 0.70 (0.49 to 1.00) Asthma-related urgent/ER visit: RR 0.98 (0.71 to 1.34) Number of urgent care/ER visits per patient: -0.5 (-1.16 to 0.16) Hospital admission due to asthma: RR 0.24 (0.05 to 1.29) Average courses of oral corticosteroid/participant: MD -0.2 (0.6 to 0.26) Days of oral corticosteroid use/participant: MD -0.1 (-1.87 to 1.67)	NR	Composite measures: NR Spirometry: NR	PACQLQ score: MD -0.1 (-0.36 to 0.34)	NR

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma Control	Quality of Life	Healthcare Utilization
Ducharme, 2009 ⁴⁵ n=129 RCT, 12m	Age: 0-4y ICS dose: Fluticasone 750µg BID with URTI vs. PRN SABA	Required a course of oral corticosteroid: RR 0.60 (0.42 to 0.87) URTI w/asthma symptoms: OR 0.64 (0.36 to 1.13) URTI requiring systemic corticosteroid: OR 0.49 (0.3 to 0.83) Asthma-related acute care visit: RR 0.88 (0.72 to 1.07) Hospital admission due to asthma: RR 0.72 (0.35 to 1.48) URTI requiring hospitalization: OR 0.67 (0.29 to 1.38) URTI requiring acute care visit: OR 0.79 (0.53 to 1.19) Number of asthma-related acute care visits: 107 vs. 146 Number of asthma-related hospitalizations: 11 vs. 18	NR	Composite measures: NR Spirometry: NR	PACQLQ score during URTI: MD 0.49 (0.1 to 0.86)	Total number of SABA puffs per URTI [median (IQR)]: 36 (23 to 61) vs. 44 (25 to 78) Total number of days per URTI SABA used [median (IQR)]: 5 (3 to 8) vs. 6 (4 to 10) Duration of SABA use: Rate ratio: 0.85 (0.74 to 0.98) Cumulative number of SABA inhalations: Rate ratio 0.80 (0.68 to 0.94)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma Control	Quality of Life	Healthcare Utilization
Papi, 2009 ⁴⁷ n=166 RCT, 12w	Age: 0-4y ICS dose: Beclomethasone 800 μg PRN vs. PRN SABA	Progressive increase in SOB, cough or wheeze: 23 total exacerbations, 14 required oral corticosteroid	NR	Composite measures: NR Spirometry: NR	NR	Cumulative salbutamol dose (mg): 30.1 (43.0) vs. 56.3 (84.2), p<0.001 Daytime rescue medication use: MD -0.08 (-0.21 to 0.05) Nighttime rescue medication use: MD -0.04 (-0.11 to 0.03)

Abbreviations: BID=twice daily; EPR=Expert Panel Review (Guidelines for Diagnosis and Management of Asthma); ER=emergency room; HR=hazard ratio; ICS=inhaled corticosteroid; IQR=interquartile range; IRR= incident rate ratio; m=months; MD=mean difference; mg=milligram; n=patient sample size; NR=not reported; OR=odds ratio; PACQLQ=Pediatric Asthma Caregiver's Quality of Life Questionnaire; PRN=pro re nata (i.e., as-needed); RCT=randomized controlled trial; RR=relative risk; SABA=short-acting β₂-agonist; SOB=short of breath; μg=microgram; QID=four times daily; URTI=upper respiratory tract infection; w=weeks

^aAge is categorized using study inclusion criteria and the age categories used in EPR-3 of 0-4y, 5-11y and 12y+. ICS dose is categorized, when possible, using the study's required ICS dose and the EPR-3 categories of low, medium and high

^bRelative measures are presented first and include, when reported by the study, RR, HR for time to the event, and IRR for count data allowing multiple events over the period of follow-up. Count data is presented, when reported by the study, for number of hospitalizations, hospital days, and ER visits in association with exacerbations. Number of hospitalizations, hospital days, and ER visits not specified to be due to exacerbation are listed in the healthcare utilization column

Table C-3. Study level outcomes for KQ1a, intermittent ICS with as-needed SABA vs. ICS controller with as-needed SABA

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma Control	Quality of Life	Healthcare Utilization
Papi, 2009 ⁴⁷ n=220 RCT, 12w	Age: 0-4y ICS dose: Beclomethasone 800 μg PRN vs. 400μg BID	Progressive increase in SOB, cough or wheeze: 23 total exacerbations, 14 required oral corticosteroid	NR	Composite measures: NR Spirometry: NR	NR	Cumulative salbutamol dose (mg): 30.1 (43.0) vs. 34.2 (42.3) Daytime rescue medication use: MD 0.07 (-0.4 to 1.8) Nighttime rescue medication use: MD -0.02 (-0.7 to 0.3)
Zeiger, 2011 ⁴⁹ n=278 RCT, 52w	Age: 0-4y ICS dose: Budesonide 1.0mg BID (high)x7d vs. 0.5mg (low) daily	Exacerbation requiring prednisolone: HR 0.97 (0.76 to 1.22) IRR 0.99 (0.71 to 1.35) Second exacerbation requiring prednisolone: HR 0.79 (0.49 to 1.32) Exacerbation occurring during RTI: RR 0.99 (0.92 to 1.08) Proportion of RTI in which prednisolone was administered: MD 0.02 (-0.05 to 0.09) Asthma related hospitalization: RR 1.25 (0.34 to 4.56) Asthma related urgent care visit: IRR 0.99 (0.72 to 1.35)	All-cause: No events occurred	Composite measures: NR Spirometry: NR	NR	% days w/albuterol use: MD 0.4 (-1.00 to 2.00)

Abbreviations: BID=twice a day; d=day; EPR=Expert Panel Review (Guidelines for Diagnosis and Management of Asthma); ER=emergency room; HR=hazard ratio; ICS=inhaled corticosteroid; IRR=incident rate ratio; MD=mean difference; mg=milligram; n=patient sample size; NR=not reported; RCT=randomized controlled trial; RR=relative risk; RTI=respiratory tract infection; SOB=short of breath; µg=microgram; w=week; y=year

^aAge is categorized using study inclusion criteria and the age categories used in EPR-3 of 0-4y, 5-11y and 12y+. ICS dose is categorized, when possible, using the study's required ICS dose and the EPR-3 categories of low, medium and high

^bRelative measures are presented first and include, when reported by the study, RR, HR for time to the event, and IRR for count data allowing multiple events over the period of follow-up. Count data is presented, when reported by the study, for number of hospitalizations, hospital days, and ER visits in association with exacerbations. Number of hospitalizations, hospital days, and ER visits not specified to be due to exacerbation are listed in the healthcare utilization column

Table C-4. Study level outcomes for KQ1a, intermittent ICS versus no therapy

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma Control	Quality of Life	Healthcare Utilization
Ghirga, 2002 ⁴⁶ N=26 RCT, NR	Age: 0-4y ICS dose: Beclomethasone 400μg TIDx5d vs. no preventative therapy	Received oral corticosteroid: RR 0.54 (0.12 to 2.44) Asthma-related hospitalizations: No events occurred Asthma-related ER visits: RR 0.27 (0.04 to 2.10)	NR	Composite measures: NR Spirometry: NR	NR	NR

Abbreviations: d=day; EPR=Expert Panel Review (Guidelines for Diagnosis and Management of Asthma); ER=emergency room; HR=hazard ratio; ICS=inhaled corticosteroid; IRR=incident rate ratio; n=patient sample size; NR=not reported; RCT=randomized controlled trial; RR=relative risk; TID=three times a day; µg=microgram; y=year ^aAge is categorized using study inclusion criteria and the age categories used in EPR-3 of 0-4y, 5-11y and 12y+. ICS dose is categorized, when possible, using the study's required ICS dose and the EPR-3 categories of low, medium and high

^bRelative measures are presented first and include, when reported by the study, RR, HR for time to the event, and IRR for count data allowing multiple events over the period of follow-up. Count data is presented, when reported by the study, for number of hospitalizations, hospital days, and ER visits in association with exacerbations. Number of hospitalizations, hospital days, and ER visits not specified to be due to exacerbation are listed in the healthcare utilization column

Table C-5. Study and population characteristics for KQ1b, intermittent ICS and ICS controller vs. ICS controller

Study, Year, N, Acronym, Study design, Duration, Risk of bias Lahdensuo,	Study population ≥18y with mild to moderately	cs for KQ1b, intermitten Intervention Comparisons Budesonide 200µg/dose	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (μg/d) [mean (SD)]
1996 ⁶⁷ n=115 RCT, 12m Medium	severe asthma on budesonide (400-1600µg/d) or beclomethasone (500-2000µg/d) during the prior 6m	(DPI) self-adjusted: PEF <85% double ICS dose x 2w; PEF<70% initiate oral prednisolone 40mg/d x7d; otherwise maintain stable dose n=56	(14.2)	20.0	0.2 (0.4)	(0.74)	(15.8)	NIX	(375)
	All patients used SABA as rescue PRN. Other concomitant asthma therapies were continued ^a	Budesonide (DPI/MDI) or beclomethasone (MDI) traditional treatment with usual evaluation by physician for adjustments n=59	42.8 (15.2)	47.5	6.8 (7.6)	2.96 (0.89)	81.7 (16.6)	NR	962 (392), 1167 (408) ^b
Foresi, 2000 ⁵⁶ n=134 RCT, 6m Unclear	18-65 years old with moderate perennial asthma, treated with beclomethasone 500-1000μg/d for at least 4w, daily requirement of inhaled β ₂ -agoniost, wheeze, cough, chest tightness, SOB at rest that interfered with normal activities during 2w pre-study period	Budesonide 100µg BID + 200µg QID x 7d if PEF <70%. If PEF remained <70% after 2 days then prednisolone PO 30mg x3-10d added by investigator n=67	39.0 (13.5)	41.8	<5y=28.4 5-10y= 19.4 >10y=52.2	NR	75.6 (9.9)	NR	NR
	Inhaled β ₂ -agoniost was allowed PRN and treatment with LABA and theophylline were kept constant ^c	Budesonide 400µg BID+ placebo if PEF <70%. If PEF remained <70% prednisolone initiated as above n=67	36.6 (13.1)	46.3	<5y=25.4 5 to 10y= 28.4 >10y=46.3	NR	73.2 (11.0)	NR	NR

Study, Year, N, Acronym, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (µg/d) [mean (SD)]
Colland, 2004 ⁵⁴ n=29 RCT, 1y	4 to 11 years old with moderate asthma, ICS naïve with an indication to begin ICS maintenance treatment	Self-initiated doubling of daily ICS dose x1w with occurrence of prodromal signs n=14	6 (4-10) ^d	71.4	NR	NR	100 (13)	NR	NR
Unclear	All patients received beclomethasone or budesonide 400μg, or fluticasone 200-250μg divided over 2 doses (spacer/DPI)	Daily maintenance medications with no adjustments n=15	7 (4–11) ^d	60	NR	NR	105 (17)	NR	NR
FitzGerald, 2004 ⁵⁵ n=98 RCT, 6m Low	≥13 years old with asthma on a stable dose of ≤1200µg beclomethasone or equivalent daily for 1m prior to study, ≥1 exacerbation in prior 12m All patients received budesonide 100-400µg BID depending on their prior maintenance therapy+ terbutaline PRN. Mean budesonide at baseline was 634.7 µg/d. Theophylline was allowed	Add study inhaler which provided doubling of daily ICS dose x14d if prompted by MiniDoc (PEF<80% + additional required symptoms present); PEF<60% prompted by MiniDoc to take oral methylprednisolone 32mg/d x7df n=46	31.6 (14.6)	30	>1y=93	2.9 (0.8)	NR	NR	NR
	during the study ^e	Add placebo inhaler x14d if prompted by MiniDoc (PEF<80% + additional required symptoms present); PEF<60% prompted by MiniDoc to take oral methylprednisolone as above n=52	32.7 (11.9)	25	>1yr=90	2.8 (0.6)	NR	NR	NR

Study, Year, N, Acronym, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (µg/d) [mean (SD)]
Harrison, 2004 ⁵⁹ n=390 RCT, 12m Low	≥16 years old with asthma taking ICS (100-2000µg/d) regularly, taken oral corticosteroids or temporarily doubled dose in prior 12m due to an exacerbation, stable during run-in based on PEF and symptoms All patients continued usual treatment throughout the study. Mean ICS dose 708-711µg/d, 34.3-37.5% on LABA at baseline	Add study inhaler which provided doubling of daily ICS dose x14d if AM PEF≤85% or daytime symptom score increased by 1 point from run-in value; if PEF≤60% or asthma control deteriorated to point of usual corticosteroid therapy then oral prednisolone 30mg daily x10d was started n=192	50 (13)	36	NR	2.4 (0.8)	79 (19.6)	NR	NR
		Add placebo inhaler x14d for PEF≤85% or symptom score increase. If PEF≤60% or asthma control deteriorated to point of usual corticosteroid therapy then oral prednisolone as above n=198	48 (14)	29	NR	2.4 (0.8)	81 (21.1)	NR	NR
Oborne, 2009 ⁶⁶ n=403 RCT, 12m	≥16y old with asthma, taking 200- 1000µg/d beclomethasone or equivalent, have taken oral corticosteroids or doubled ICS dose in prior 12m for exacerbation	Add study inhaler x7-14d which provided a quadrupling of daily ICS dose, otherwise usual ICS dose daily n=197	53 (14)	41	NR	2.4 (0.7)	83.7 (19)	NR	NR

Study, Year, N, Acronym, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (μg/d) [mean (SD)]
Low	Patients self-adjusted therapy according to action plan-AM PEF ≤70% for 1 day or ≤85% for two or more days, in presences of symptom worsening or URTI: start study inhaler for 7d in addition to normal asthma treatment ⁹ , continue for another 7d if PEF did not return to baseline AM PEF≤40%, general practitioner advised so, or asthma was at the point of usually starting systemic corticosteroids: start prednisone 30mg PO daily	Add placebo inhaler x7- 14d + usual daily ICS dose otherwise n=206	55 (13)	37	NR	2.4 (0.7)	83.2 (18)	NR	NR
Martinez, 2011 ⁶⁰ TREXA n=143 RCT, 44w Low	6-18y of age w/history of mild persistent asthma during prior 2y, qualifying for interruption or discontinuation of controller therapy because illness was well controlled per EPR, asthma remained controlled during run-in on beclomethasone 40µg BID; either naïve to controller therapy with 1-2 exacerbations in prior year, treated in prior 8w on monotherapy other than ICS, or if illness was controlled for prior 8w on low-dose ICS monotherapy (≤160µg/d beclomethasone	Beclomethasone 40μg BID (MDI) with PRN use of beclomethasone 40μg (MDI) + albuterol 90μg (MDI) PRN n=71	11.4 (3.1)	55	NR	NR	101.5 (11.7)	NR	NR

Study, Year, N, Acronym, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (µg/d) [mean (SD)]
	equivalent)h All patients used PRN inhalers every time they would have used albuterol for symptom relief or to treat decreased in PEF, number of puffs was self-determined. All patients received prednisone x4d for asthma exacerbation	Beclomethasone 40 µg BID (MDI) with PRN use of placebo inhaler + albuterol 90µg (MDI) n=72	10.8 (3.5)	58	NR	NR	100.1 (10.8)	NR	NR

Abbreviations: AM=morning; BID=twice daily; d=day; DPI=dry powder inhaler; EPR=Expert Panel Review (Guidelines for Diagnosis and Management of Asthma); FEV₁=forced expiratory volume in one second; GP=general practitioner; ICS=inhaled corticosteroid; L=liter; LABA=long-acting β₂-agonist; m=month; MDI=metered dose inhaler; n=patient sample size; NR=not reported; PO=by mouth; PRN=pro re nata (i.e., as-needed); PEF=peak expiratory flow; QID=four times daily; RCT=randomized controlled trial; SABA=short-acting β₂-agonist; SD=standard deviation; w=weeks; y=years

^aConcurrent therapies during the trial in the self-adjusted arm included inhaled anticholinergics (5.4%), methylxanthines (16.1%) and nedocromil (3.6%). Concurrent therapies during the trial in the traditional treatment arm included inhaled anticholinergics (3.6%), methylxanthines (18.6%) and nedocromil (3.4%)

^bFirst and second set of values represent budesonide and beclomethasone, respectively

 $^{^{}c}$ LABA and theophylline use during the trial in the budesonide 100 μ g BID + additional use arm were 37.3% and 11.9%, respectively. LABA and theophylline use during the trial in the budesonide 100 μ g BID + placebo arm were 49.3% and 26.9%, respectively, and in the 400 μ g BID + placebo arm were 41.8% and 13.4%, respectively

^dData reported as mean (range)

^eTheophylline use in the doubled dose and maintenance dose arms were 0% and 3.8%, respectively

MinDoc programmed with alert asthma symptom score (three ordinal values above the mean baseline total symptom score on 2 consecutive days) and alerted the patient in the event of an asthma exacerbation. Patient reported exacerbation to study personnel and given instructions to take additional inhaler

^gLABA use in the quadrupled dose and maintenance dose arms were 38% and 39%, respectively

hInhaled corticosteroid and leukotriene receptor inhibitor/antagonist use in the previous year in the rescue arm was 72% and 20%, respectively. Previous year use of inhaled ICS and leukotriene receptor inhibitor/antagonist in the combined arm were 76% and 16%, respectively, and in the daily arm were 82% and 10%

Table C-6. Study and population characteristics for KQ1b, intermittent ICS vs. ICS controller

Study, Year, N, Acronym, Study design, Duration Risk of Bias	Study population	Intervention Comparisons	Age (y) [mean, (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (μg/d) [mean (SD)]
Boushey, 2005 ⁵¹ IMPACT n=149 RCT, 52w	18-65 years of age w/mild persistent asthma (self-treatment with β ₂ -agonist>2d per week, nighttime awakenings related to asthma >2d per month, or variability in the PEF of 20-30%).	Placebo inhaler BID + placebo tablets BID n=76	32.0 (10.5)	43	19.5 (11.8)	3.2 (0.7)	87.8 (12.7)	NR	NR
Low	All patients self-adjusted according to action plan ^a -Green zone: Continue as usual, albuterol PRN Yellow zone: Start budesonide 800µg BID x10d Red zone: Start prednisone 0.5mg/kg PO x5d Extra red zone: albuterol, prednisone and go to ER or call 911	Budesonide 200µg BID (DPI)+ placebo tablets BID n=73	33.2 (9.5)	38	17.1 (11.0)	3.2 (0.8)	90.5 (12.6)	NR	NR
Papi, 2007 ⁶³ BEST-adult n=337 RCT, 6m	18-65 years old with mild persistent asthma according to EPR2 for at least 6m, adequately controlled at the end of run-in on	Placebo inhaler BID + Beclomethasone/ albuterol 250/100μg PRN n=122	36.8 (13.1)	41.0	NR	3.0 (0.8)	88.5 (11.3)	0.4 (0.7)	18,480 (25250)
Low	beclomethasone 250µg BID. No written action plan, orally instructed to use PRN inhaler for symptom relief.	Beclomethasone/ albuterol 250/100μg BID + albuterol 100μg PRN n=109	39.9 (14.4)	39.4	NR	2.9 (0.7)	87.2 (10.7)	0.5 (0.7)	77,070 (17550)
		Beclomethasone 250μg BID + albuterol 100μg PRN n=106	37.9 (13.5)	42.5	NR	3.0 (0.7)	88.8 (11.1)	0.4 (0.7)	76,970 (17350)

Study, Year, N, Acronym, Study design, Duration Risk of Bias	Study population	Intervention Comparisons	Age (y) [mean, (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (µg/d) [mean (SD)]
Turpeinen, 2007 ⁶⁴ HELSINKI n=116 RCT, 18m Low	5-10 years old with symptoms such as wheezing, prolonged cough or SOB suggesting asthma for at least 1m. According to symptoms and lung function majority of children could be categorized as mild persistent asthma.	Budesonide 400μg BID x1m, 200μg BID x5m, placebo x12m n=58	6.7 (5-10) ^d	66	11.3 (2.0 to 76.4) ^{d,e}	1.32 (0.72 to 2.36) ^d	82 (52-107) ^d	0.55 (0-3.7) ^d	NR
	All patients received terbutaline PRN and physician determined replacement of study medication with budesonide 400µg BID x2w during exacerbations.	Budesonide 400μg BID x1m, 200μg BID x5m, 100μg BID x12m n=58	7.0 (5 to 10) ^d	59	12.8 (1.1 to 70.5) ^{d,e}	1.43 (0.89 to 2.15) ^d	87 (57-111) ^d	0.47 (0-4.0) ^d	NR
Martinez, 2011 ⁶⁰ TREXA n=143 RCT, 44w Low	6-18y of age w/history of mild persistent asthma during prior 2y, qualifying for interruption or discontinuation of controller therapy because illness was well controlled per EPR, asthma remained controlled during run-in on beclomethasone 40µg BID; either naïve to controller therapy with 1-2 exacerbations in prior year, treated in prior 8w on monotherapy other than ICS, or if illness was controlled for prior 8w on low-dose ICS monotherapy (≤160µg/d beclomethasone	Placebo inhaler BID with PRN use of beclomethasone 40μg (MDI) + albuterol 90μg (MDI) n=71	10.4 (2.8)	52	NR	NR	101.4 (12.1)	NR	NR

Study, Year, N, Acronym, Study design, Duration Risk of Bias	Study population	Intervention Comparisons	Age (y) [mean, (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (µg/d) [mean (SD)]
	equivalent).f All patients used PRN inhalers every time they would have used albuterol for symptom relief or to treat decreased in PEF, number of puffs was self-determined. All patients received prednisone x4d for asthma exacerbation	Beclomethasone 40 μg BID (MDI) with PRN use of placebo inhaler + albuterol 90μg (MDI) n=72	10.8 (3.5)	58	NR	NR	100.1 (10.8)	NR	NR
Calhoun, 2012 ⁵² BASALT n=227 RCT, 9m Low	≥18y and older with mild to moderate asthma, need for daily controller therapy based on receiving prescription in prior 12m or symptoms more than twice/w and not on controller, if on ICS ≤1000µg fluticasone or equivalent stable for at least 2w, completely controlled asthma during run-in on beclomethasone 80µg BID, based on asthma evaluation questionnaire and FEV>70% predicted.	Budesonide 40µg (MDI) used on a puff-per-puff basis every time the patient uses albuterol (MDI) n=113	36.0 (12.2)	26.5	21.3 (12.1)	2.90 (0.69)	85.6 (11.0)	0 (0-0.31) ^g	832 (NR) ^h
	All patients received unrestricted albuterol (MDI). Investigators were allowed to add open-label budesonide 80µg BID x14d if needed.	Budesonide 80µg BID (MDI) adjusted by physician every 6w based on NHLBI guidelines n=114	34.2 (11.9)	36.8	20.4 (10.4)	3.03 (0.72)	87.7 (12.1)	0.04 (0- 0.29) ⁹	1610 (NR) ^h

Abbreviations: BID=twice daily; d=day; DPI=dry powder inhaler; EPR=Expert Panel Review (Guidelines for Diagnosis and Management of Asthma); ER=emergency room; FEV₁=forced expiratory volume in one second; ICS=inhaled corticosteroid; L=liter; LABA=long-acting β₂-agonist; m=months; MDI=metered dose inhaler; n=patient sample size; NHLBI=National Heart, Lung and Blood Institute; NR=not reported; PO=by mouth; PRN=pro re nata (i.e., as-needed); PEF=peak expiratory flow; QID=four times daily; RCT=randomized controlled trial; SD=standard deviation; SOB=shortness of breath; w=weeks; y=years

^aGreen zone: symptoms and albuterol use stable; Yellow zone: Awakening from asthma 3+ times in a 2-week period or on 2 consecutive nights, or using albuterol for relief of symptoms 4+ times/day for 2 or more consecutive days, or albuterol has been relieving symptoms for less than 4h each treatment over a 12-hour period, or using albuterol for relief of symptoms daily for 7 days, and this use exceeds 2 times the weekly use of albuterol in the baseline period, or exercise induces unusual breathlessness; Red zone: For the

previous 24 hours, daily life activities cause SOB or breathlessness is present at rest, or albuterol has been relieving symptoms for <2h after each treatment over an 8h period; Extra red zone: Severe SOB at rest, or difficulty talking because of SOB, or albuterol has been relieving symptoms for less than 1h after each treatment over a 4h period, or does not relieve symptoms after 2 treatments repeated within a single hour

^fInhaled ICS and leukotriene receptor inhibitor/antagonist use in the previous year in the rescue arm was 72% and 20%, respectively. Previous year use of inhaled corticosteroids and leukotriene receptor inhibitor/antagonist in the combined arm were 76% and 16%, respectively, and in the daily arm were 82% and 10%

Table C-7. Study level outcomes for KQ1b, intermittent ICS and ICS controller vs. ICS controller

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma control	Quality of life	Healthcare utilization
Lahdensuo, 1996 ⁶⁷ n=115 RCT, 12m	Age: 12y+ Severity/control: Mild to moderately severe asthma Intermittent ICS: Doubling regular dose	Relative measures Requiring oral corticosteroid: RR 0.51 (0.29 to 0.88) Exacerbation (undefined): RR 0.48 (0.33 to 0.71) Asthma-related hospitalization: RR 0.70 (0.12 to 4.05) Unscheduled outpatient visit: RR 0.53 (0.29 to 0.96) Count data Number of hospitalizations: 2 vs. 3	NR	Composite measures: NR Spirometry: NR	NR	NR
Foresi, 2000 ⁵⁶ n=134 RCT, 6m	Age: 12y+ Severity/control: Moderate persistent asthma/ symptomatic Intermittent ICS: Quadrupling regular dose	Relative measures Fall in PEF <70% from baseline: RR 1.09 (0.52 to 2.30) Count data Total number of oral corticosteroid days: 37 vs. 47	NR	Composite measures: NR Spirometry: NR	NR	NR

^bCumulative doses of beclomethasone inhaled during the entire 6-month treatment period

Exacerbations defined as an increase in symptoms not controlled by 6 doses/24h of terbutaline that caused the parent to contact the clinic

^dData reported as mean (range)

^eData reported in months

^gData reported as median (interquartile range)

^hRepresents mean monthly dose

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma control	Quality of life	Healthcare utilization
Colland, 2004 ⁵⁴ n=29 RCT, 12m	Age: 5-11y Severity/control: Moderate persistent asthma/ symptomatic Intermittent ICS: Doubling regular dose	Relative measures Requiring hospitalization: Peto's OR 0.14 (0.003 to 7.31) Count data NR	NR	Composite measures: NR Spirometry: FEV1 % predicted: MD 5 (-6.01 to 16.01)	NR	NR
Fitzgerald, 2004 ⁵⁵ n=98 RCT, 6m	Age: 12y+ Severity/control: Persistent asthma Intermittent ICS: Doubling regular dose	Relative measures Requiring oral corticosteroid (of those who initiated study inhaler) RR: 0.85 (0.39 to 1.83) Requiring oral corticosteroid, unscheduled doctors visit, ER, or unstable asthma: RR 1.03 (0.63 to 1.65) Unstable asthmac: RR 0.57 (0.23 to 1.38) Count data NR	NR	Composite measures: NR Spirometry: NR	NR	NR
Harrison, 2004 ⁵⁹ n=390 RCT, 12m	Age: 12y+ Severity/control: Persistent asthma/ stable during run-in Intermittent ICS: Doubling regular dose	Relative measures Requiring oral corticosteroid (full population): RR 0.95 (0.55 to 1.63) Requiring oral corticosteroid (of those who initiated study inhaler) RR: 0.76 (0.44 to 1.32) Count data NR	NR	Composite measures: NR Spirometry: NR	NR	Asthma-related general practitioner visits: RR 1.14 (0.71 to 1.83)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma control	Quality of life	Healthcare utilization
Oborne, 2009 ⁶⁶ n=403 RCT, 12m	Age: 12y+ Severity/control: Persistent asthma Intermittent ICS: Quadrupling regular dose	Relative measures Requiring oral corticosteroid (full population): RR 0.64 (0.37 to 1.11) Requiring oral corticosteroid (of those who initiated study inhaler) RR: 0.43 (0.24 to 0.78) 2 to 3 exacerbations requiring oral corticosteroid (full population): RR 0.63 (0.15 to 2.59) 2 to 3 exacerbations requiring oral corticosteroid (of those who initiated study inhaler): RR 0.34 (0.07 to 1.76) Count data NR	NR	Composite measures: NR Spirometry: NR	NR	NR
Martinez, 2011 ⁶⁰ n=143 RCT, 12m	Age: Mixed, (5-11y and 12y+) Severity/control: Mild persistent asthma/well controlled Intermittent ICS: ICS used with albuterol	Relative measures Requiring oral corticosteroid: RR 1.12 (0.67 to 1.86) Treatment failure ^d : RR 2.03 (0.39 to 10.72)	NR	Composite measures: NR Spirometry: FEV1 % predicted: MD 0.57 (-2.24 to 3.38)	PAQLQ score: MD -0.003 (- 0.25 to 0.25)	Albuterol puffs/day: MD 0.04 (-0.33 to 0.40)

Abbreviations: d=days; ER=emergency room; EPR-3=Expert Panel Review-3; FEV1=forced expiratory volume in one second; HR=hazard ratio; ICS=inhaled corticosteroid; IRR=incident rate ratio; m=months; MD=mean difference; n=patient sample size; NR=not reported; OR=odds ratio; PAQLQ=Pediatric Asthma Quality of Life Questionnaire; RCT=randomized controlled trial; RR=relative risk; y=year

^aCategorized using study inclusion criteria and the age categories used in EPR-3 of 0-4y, 5-11y and 12y+. Severity is as reported per the study. Control was usually not specified and rather details about patients being symptomatic or not at entry were given and reported here. Intermittent ICS indicates how the usual ICS dose was altered in the intervention arm

^bRelative measures are presented first and include, when reported by the study RR, HR for time to the event, and IRR for count data allowing multiple events over the period of follow-up. Count data is presented, when reported by the study, for number of hospitalizations, hospital days, and ER visits in association with exacerbations.

^cDefined as the absence of stability, where stability is defined as morning peak expiratory flow 90% or more of mean baseline value on either of the two previous days, <4 inhalations of inhaled corticosteroid per day over the past 2 days, no nocturnal awakenings in the prior 2 nights and a total symptom score not exceeding mean baseline value more than 2 ordinal values over the previous 2 days

^dDefined as any of following: (1) Hospitalization due to asthma; (2) Hypoxic seizure due to asthma; (3) Intubation due to asthma; (4) Requirement for a second burst of prednisone within any 6 months period; (5) Significant adverse event related to the use of a study medication. The only criterion for assignment of treatment failure during the trial was the requirement for a second burst of prednisone within any six-month period

Table C-8. Study level outcomes for KQ1b, intermittent ICS vs. ICS controller

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma Control	Quality of Life	Healthcare Utilization
Boushey, 2005 ⁵¹ n=149 RCT, 52w	Age: 12y+ Severity/control: Mild persistent Intermittent ICS: Yellow zone budesonide 800µg BIDx10d	Requiring oral corticosteroid: RR 0.70 (0.30 to 1.64) Requiring hospitalization: No events occurred	NR	Composite measures: ACQ-7 score: MD 0.1 (-0.12 to 0.32) Spirometry: FEV1 pre-albuterol (% change): MD -3.3 (-6.51 to -0.09) FEV1 post-albuterol (% change): MD -0.7 (-2.1 to 0.7)	AQLQ(S) score: MD -0.2 (-0.48 to 0.08)	NR
Papi, 2007 ⁶³ n=337 RCT, 6m	Age: 12y+ Severity/control: Mild persistent asthma/controlled Intermittent ICS: Beclomethasone/ albuterol 250/100μg PRN symptom relief	Mild ^c or severe ^d exacerbation: RR 0.87 (0.29 to 2.61) Severe exacerbation: Peto's OR 0.11 (0.01 to 1.11)	NR	Composite measures: NR Spirometry: FEV1, trough MD 0.09 (-0.01 to 0.18) FEV1 % predicted: MD 2.04 (-0.71 to 4.79) FVC, trough MD 0.07 (-0.03 to 0.18) FVC % predicted MD 1.72 (-1.04 to 4.48)	NR	Rescue albuterol use, inhalations/d MD 0.07 (-0.13 to 0.26)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma Control	Quality of Life	Healthcare Utilization
Turpeinen, 2007 ⁶⁴ n=116 RCT, 18m	Age: 5-11y Severity/control: Majority mild persistent/ symptomatic Intermittent ICS: Budesonide 400mg BIDx14d upon symptoms determined by pediatrician to be exacerbation	Exacerbation rate ^e : MD -0.72 (-1.27 to -0.17)	NR	NR	NR	NR
Martinez, 2011 ⁶⁰ n=143 RCT, 44w	Age: Mixed (5-11, 12y+) Severity/control: Mild persistent/ well controlled Intermittent ICS: Beclomethasone 40µg+albuterol 90µg PRN symptom relief prompting albuterol use or to treat decrease PEF	Requiring oral corticosteroid: RR 1.27 (0.78 to 2.07) Treatment failure ^f : RR 3.04 (0.64 to 14.57)	NR	Composite measures: NR Spirometry: FEV1 % predicted: MD -1.30 (-4.24 to 1.64)	PAQLQ score: MD 0.04 (-0.25 to 0.33)	Rescue albuterol use, inhalations/d: MD 0.003 (-0.24 to 0.25)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma Control	Quality of Life	Healthcare Utilization
Calhoun, 2012 ^{52,9} n=227 RCT, 9m	Age: 12y+ Severity/control: Mild to moderate persistent/ well or partially well controlled Intermittent ICS: Beclomethasone 80µg PRN symptom relief prompting albuterol use	Exacerbation ^h : IRR 2.0 (0.87 to 4.61) Urgent care visit for asthma: RR 0.25 (0.05 to 1.16) Treatment failure ⁱ : HR 1.6 (0.86 to 2.98) IRR 1.7 (0.96 to 3.00)	NR	Composite measures: ACQ-5 MD -0.01 (-0.17 to 0.15) Spirometry: FEV1 trough pre albuterol: MD 0.01 (-0.13 to 0.15) FEV1 trough post albuterol: MD -0.01 (-0.06 to 0.04) FEV1 % predicted pre albuterol: MD 0.01 (-1.89 to 1.91) FEV1 % predicted post albuterol: MD 0.04 (-1.97 to 1.01)	AQLQ(S) score: MD 0.01 (-0.19 to 0.21)	Rescue albuterol use, inhalations/d: MD -0.04 (-0.11 to 0.03)

Abbreviations: ACQ=Asthma Control Questionnaire; AQLQ=Asthma Quality of Life Questionnaire; AQLQ(S)=Standardized Asthma Quality of Life Questionnaire; BID=twice daily; d=days; ER=emergency room; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; HR=hazard ratio; ICS=inhaled corticosteroid; IRR= incident rate ratio; m=months; MD=mean difference; mg=milligrams; n=patient sample size; NR=not reported; OR=odds ratio; PAQLQ=Pediatric Asthma Quality of Life Questionnaire; PEF=peak expiratory flow; PRN=pro re nata (i.e., as-needed); RCT=randomized controlled trial; RR=relative risk; µg=micrograms; w=weeks; y=year

^aAge is categorized using study inclusion criteria and the age categories used in Expert Panel Review-3 (EPR-3) of 0-4y, 5-11y and 12y+. Severity is as reported per the study. Control was usually not specified and rather details about patients being symptomatic or not at entry were given and reported here. Intermittent ICS indicates how the usual ICS dose was altered in the intervention arm

^bRelative measures are presented first and include, when reported by the study, relative risk (RR), hazard ratio (HR) for time to the event, and incident rate ratio (IRR) for count data allowing multiple events over the period of follow-up. Count data is presented, when reported by the study, for number of hospitalizations, hospital days, and ER visits in association with exacerbations

^cDefined as awakening at night owing to asthma or as a decrease in the morning peak expiratory flow rate to more than 20% below the baseline value, the use of more than three additional puffs per day of rescue medication (either albuterol or beclomethasone and albuterol) as compared with during the baseline for 2 or more consecutive days, or both. Single, isolated days on which mild exacerbation occurred were not counted

^dDefined as a decrease in the morning peak expiratory flow rate to more than 30% below the baseline value on 2 consecutive days or more than eight puffs per day of rescue medication for 3 consecutive days or the need for treatment with oral corticosteroids, as judged by the investigator

^eDefined as the mean number of exacerbations divided by the number of patients in the group. An asthma exacerbation was defined as an increase in symptoms that were not controlled with six doses of rescue terbutaline per 24 h that caused the parent to contact the clinic. At clinic pediatrician determined if exacerbation occurred and prescribed budesonide inhaler

Defined as any of following: (1) Hospitalization due to asthma; (2) Hypoxic seizure due to asthma; (3) Intubation due to asthma; (4) Requirement for a second burst of prednisone

within any 6 months period; (5) Significant adverse event related to the use of a study medication. The only criterion for assignment of treatment failure during the trial was the requirement for a second burst of prednisone within any six-month period

gStudy reported 97.5% confidence intervals which were converted to 95% confidence intervals

^hDefined as unscheduled medical contact for increased asthma symptoms that results in use of oral corticosteroids, increased inhaled corticosteroids, or additional medications for asthma

Defined as any of the following: (1) Asthma exacerbation; (2) An at-home measurement of prebronchodilator AM PEF <65% of baseline on 2 consecutive mornings, postbronchodilator PEF <80% of baseline despite 60 minutes of rescue treatment, or an increase in albuterol use of more than 8 puffs per 24 hours over baseline use for 48 hours or more than 16 puffs per 24 hours for more than 48 hours; (3) In-clinic measurements of prebronchodilator FEV1 on 2 consecutive sets of spirometric determinations measured 24 to 72 hours apart that are less than 80% of baseline, physician judgement for patient safety, patient dissatisfaction with asthma control achieved by study regimen or requirement for open-label ICS or another new asthma medication without the addition of systemic corticosteroids

Table C-9. Study and population characteristics for KQ1c, ICS and LABA controller and quick relief vs. ICS controller (same dose)

Study, Year, n, Acronym, Study design, Duration, Risk of bias Scicchitano,	Study population 12-80 years of age with moderate	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)] 12 (1 to	FEV1 (L) [mean (SD)]	FEV1 % predict- ed (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (µg/d) [mean (SD)]
2004 ⁹⁶ n=1890 RCT, 12m	to severe (83% with severe according to GINA guidelines), symptomatic asthma on ICS 400-1600µg/d, FEV1 50-90% predicted, history of at least 1 exacerbation in prior year	320/9µg in the evening + 160/4.5µg PRN (DPI) n=947	(12 to 79) ^a		65) ^à		(46 to 102) ^a	(0 to 15.6) ^a	
	ICS dose at entry: 744-748µg/d Taking LABA at entry: 35%	Budesonide 160μg BID (DPI) + terbutaline PRN (DPI) n=943	43 (11 to 80) ^a	43	12 (1 to 71) ^a	NR	70 (37 to 95) ^a	2.0 (0 to 9.2) ^a	640 (NR)
Rabe, 2006 ⁹⁴ n=697 RCT, 6m Low	12-80 years of age with mild to moderate asthma on ICS 200-500µg/d, FEV1 60-100% predicted, symptomatic with ≥7 SABA inhalations during last 10 run-in days	Budesonide/formoterol 160/9µg in the evening + 80/4.5mcg PRN (DPI) n=355	38 (12 to 79) ^a	41	10 (1 to 70) ^b	NR	75 (51 to 123) ^a	NR	240 (NR)
	ICS dose at entry: 343-353μg/d LABA at entry: 10-13%	Budesonide 160µg in the evening (DPI) + terbutaline PRN (DPI) n=342	38 (11 to 78) ^a	36	10 (1 to 61) ^b	NR	75 (52 to 109) ^a	NR	320 (NR)
Sovani, 2008 ⁹⁹ n=71 RCT, 6m High	18-70 years of age with asthma on ICS 400-1000µg/d of beclomethasone or equivalent, with evidence of poor asthma control (in prior year ≥2 courses of prednisolone or 10 SABA canisters, and taking ≥4 SABA puffs in ≥4d/week in prior month	Budesonide/formoterol 160/4.5μg BID + PRN (DPI) n=36	40.3 (12.8)	47.2	23.1 (12)	2.9 (0.84)	88.1 (19.3)	NR	448 (NR)
	ICS dose at entry:565-611µg/d	Budesonide 160μg BID (DPI) + SABA PRN n=35	40.3 (12.3)	42.9	22.6 (14)	2.65 (0.82)	82.3 (18.7)	NR	252 (NR)

Abbreviations: BID=twice daily; d=day; DPI=dry powder inhaler; FEV₁=forced expiratory volume in one second; GINA= Global Initiative for Asthma; ICS=inhaled corticosteroid; L=liter; LABA=long-acting β₂-agonist; m=months; n=patient sample size; NR=not reported; PRN=pro re nata (i.e., as-needed); RCT=randomized controlled trial; SABA=short-acting β₂-agonist; SD=standard deviation; μg=microgram; w=week; y=year

^aData reported as mean (range)

^bData reported as median (range)

Table C-10. Study and population characteristics for KQ1c, ICS and LABA controller and quick relief vs. ICS controller (higher dose)

Study, Year, n, Acronym, Study design, Duration, Risk of bias	Study population 4-80 years of age with asthma	Intervention Comparisons Budesonide/formoterol	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)] 9 (0 to	FEV1 (L) [mean (SD)]	FEV1 % predict- ed (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (µg/d) [mean (SD)]
n=1851 STAY RCT, 12m Low	treated with 400-1000µg/d of ICS (200-500µg/d if 4-11 years old), history of 1 or more exacerbation in prior year, FEV1 60-100% predicted, 12+ (8+ if 4-11y) SABA inhalations during last 10d of runin.	80/4.5μg BID + PRN (DPI) n=925	(4 to 77) ^a		63) ^b	(0.65 to 4.28) ^a	(43 to 108) ^a	(0 to 8.0) ^{a,c}	(NR) ^d
	ICS dose at entry: 598-620µg/d Taking LABA at entry: 27-29%	Budesonide 320µg BID (DPI) + terbutaline 0.4mg PRN (DPI) n=926	36 (4 to 79) ^a	44.9	9 (0 to 96) ^b	2.14 (0.64 to 4.02) ^a	73 (49 to 100) ^a	1.69 (0 to 7) ^{a,c}	641.5 (NR) ^d
	4-11 year old subgroup with asthma treated with 200-500μg/d of ICS, history of 1 or more exacerbation in prior year, FEV1 60-100% predicted, 8+ SABA inhalations during last 10d of runin. ICS dose at entry:319-321μg/d	Budesonide/formoterol 80/4.5μg QD + PRN (DPI) n=118	8 (4 to 11) ^a	72.0	3 (1 to 10) ^b	1.6 (0.9 to 2.7) ^a	76 (57 to 108) ^a	1.7 (0.7 to 5.9) ^a	125.6 (NR)
	ruico doiles de doss DDL des possidos inh	Budesonide 320µg QD (DPI) + terbutaline 0.4mg PRN (DPI) n=106	8 (4 to 11) ^a	66.4	3 (0 to 10) ^b	1.6 (0.7 to 3.1) ^a	76 (60 to 100) ^a	1.6 (0.1 to 4.0) ^a	320.1 (NR)

Abbreviations: BID=twice daily; d=day; DPI=dry powder inhaler; FEV1=forced expiratory volume in one second; ICS=inhaled corticosteroid; L=liter; LABA=long-acting β_2 -agonist; m=months; n=patient sample size; NR=not reported; PRN=pro re nata (i.e., as-needed); QD=daily; RCT=randomized controlled trial; SABA=short-acting β_2 -agonist; SD=standard deviation; μ g=microgram; y=years

^aData reported as mean (range)

^bData reported as median (range)

^cRepresents inhalations/d (vs. night)

^dRepresents patients 12y+

Table C-11. Study and population characteristics for KQ1c, ICS and LABA controller and quick relief vs. ICS and LABA controller (same dose)

dose)			_					_	
Study, Year, n, Acronym, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (µg/d) [mean (SD)]
O'Byrne, 2005 ^{75,83,} STAY n=1834 RCT, 12m	4-80 years of age with asthma treated with 400-1000μg/d of ICS (200-500μg/d if 4-11 years old), history of 1 or more exacerbation in prior year, FEV1 60-100% predicted, 12+ (8+ if 4-11y) SABA inhalations during last 10d of runin	Budesonide/formoterol 80/4.5µg BID + PRN (DPI) n=925	35 (4 to 77) ^a	45.5	9 (0 to 63) ^b	2.13 (0.65 to 4.28) ^a	73 (43 to 108) ^a	1.74 (0 to 8.0) ^{a,c}	235.5 (NR) ^d
	ICS dose at entry: 598-620µg/d Taking LABA at entry: 27-29%	Budesonide/formoterol 80/4.5µg BID (DPI) + terbutaline 0.4mg PRN (DPI) n=909	36 (4 to 79) ^a	43.3	9 (0 to 65) ^b	2.10 (0.62 to 4.50) ^a	73 (46 to 108) ^a	1.69 (0 to 9.4) ^{a,c}	165.5 (NR) ^d
	4-11 year old subgroup with asthma treated with 200-500µg/d of ICS, history of 1 or more exacerbation in prior year, FEV1 60-100% predicted, 8+ SABA inhalations during last 10d of runin ICS dose at entry: 302-319µg/d	Budesonide/formoterol 80/4.5μg QD + PRN (DPI) n=118	8 (4 to 11) ^a	72.0	3 (1 to 10) ^b	1.6 (0.9 to 2.7) ^a	76 (57 to 108) ^a	1.7 (0.7 to 5.9) ^a	125.6 (NR)
		Budesonide/formoterol 80/4.5μg QD (DPI) + terbutaline 0.4mg PRN (DPI) n=117	8 (4 to 11) ^a	70.1	3 (0 to 11) ^b	1.5 (0.7 to 2.9) ^a	76 (54 to 99) ^a	1.6 (0.3 to 5.6) ^a	81.8 (NR)
Vogelmeier, 2005 ¹⁰⁴ COSMOS n=2143 RCT, 12m Medium	≥12 years of age with asthma, taking ≥500µg/d of budesonide or fluticasone (or ≥1000µg/d for other ICS), FEV1 40-90% predicted, at least 1 severe exacerbation in prior year, rescue medication use ≥4 of 7 days in run-in	Budesonide/formoterol 320/9µg BID + 160/4.5µg/d PRN (DPI) n=1067	45 (12 to 80) ^a	42.3	13 (1to 75) ^a	NR	73 (39 to 115) ^a	2.6 (0.2 to 10.7) ^a	1019 (NR) ^e

Study, Year, n, Acronym, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (μg/d) [mean (SD)]
	ICS dose at entry: 881-888µg/d LABA use at entry: 38% Doses of randomized therapies could be titrated and additional controllers added during trial if needed ^f	Fluticasone/salmeterol 250/50µg BID (DPI) + salbutamol PRN (DPI/MDI) n=1076	45 (12 to 84) ^a	39.9	12 (0 to 74) ^a	NR	73 (28 to 100) ^a	2.7 (0.3 to 33.7) ^a	1166 (NR) ^e
Rabe, 2006 ⁹³ n=3394 RCT, 12m	≥12 years of age with asthma on ICS, FEV1 50-100% predicted, at least 1 severe asthma exacerbation in prior year, symptomatic during run-in	Budesonide/formoterol 160/4.5μg BID + PRN (DPI) n=1113	42 (12 to 89) ^a	39	9 (0 to 64) ^b	2.21 (0.61 to 4.68) ^a	72 (30 to 110) ^a	1.8 (0 to 8.9) ^a	NR
Low	ICs dose at entry: 751-758µg/d LABA use at entry: 59%	Budesonide/formoterol 160/4.5μg BID (DPI) + formoterol 4.5μg (DPI) PRN n=1140	42 (12 to 81) ^a	40	10 (1 to 77) ^b	2.20 (0.74 to 4.58) ^a	72 (38 to 115) ^a	1.9 (0 to 9.1) ^a	NR
		Budesonide/formoterol 160/4.5µg BID (DPI) + terbutaline 0.4mg n=1141	43 (12 to 83) ^a	39	10 (1 to 69) ^b	2.16 (0.68 to 4.58) ^a	72 (39 to 100) ^a	1.9 (0.3 to 9.7) ^a	NR
Atienza, 2013 ⁷⁰ n=2091 RCT, 12m Low	≥16 years of age with persistent asthma, FEV1≥50% predicted, not adequately controlled despite maintenance ICS, at least 1 exacerbation in prior year, SABA use ≥5 of last 7 run-in days	Budesonide/formoterol 160/4.5μg BID + PRN (DPI) n=1049	45.7 (14.5)	31.2	12 (1 to 67) ^b	1.93 (0.64)	70.18 (14.65)	2.41 (1.55)	514 (NR)
	ICs dose at entry:659-662µg/d LABA use at entry: 61-62%	Budesonide/formoterol 160/4.5µg BID (DPI) + terbutaline 0.4mg PRN (DPI) n=1042	45.6 (14.5)	33.6	12 (1 to 74) ^b	1.93 (0.65)	69.64 (13.75)	2.43 (1.58)	320 (NR)

Study, Year, n, Acronym, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (μg/d) [mean (SD)]
Papi, 2013 ⁸⁴ n=1701 RCT, 48w Low	≥18 years of age with asthma not fully controlled on ICS alone (≥1000µg/d beclomethasone equivalents) or ICS (≥500µg/d beclomethasone equivalents) +LABA, FEV1 ≥60% predicted, at least 1 severe exacerbation in prior year	Beclomethasone/ formoterol 84.6/5µg BID + PRN (MDI) n=852	49 (18 to 83) ^a	39	9 (0.5 to 62.0) ^g	2.21 (0.88 to 5.04) ^a	74 (29 to 127)	0.98 (0.00 to 8.71)	701 (293)°
	ICS dose at entry: 1128-1139 beclomethasone equivalents LABA use at entry: 79-83%	Beclomethasone/ formoterol 84.6/5μg BID (MDI) + salbutamol 100μg PRN (MDI) n=849	47 (18 to 77) ^a	38	9 (0.5 to 61.0) ^g	2.27 (1.00- 4.74) ^a	75 (50 to 127)	0.97 (0.00 to 9.43)	489 (48) ^e
Patel, 2013 ⁸⁶ SMART n=303 RCT, 24w	16-65 years of age with asthma on ICS, at least 1 exacerbation requiring steroids in prior year	Budesonide/formoterol 320/9μg BID + PRN (MDI) n=151	41.3 (13.7)	32	26.7 (14.5)	2.62 (0.91) ^h	81.6 (18.9) ^h	NR	943.5 (1502.5)
Medium	ICS dose at entry: 804-812µg/d LABA use at entry: 61-68%	Budesonide/formoterol 320/9μg BID (MDI) + salbutamol 100-200μg PRN n=152	42.6 (14.5)	30	26.2 (14.6)	2.50 (0.78) ^h	80.4 (20.5) ^h	NR	684.3 (390.5)
Hozawa, 2014 ⁷⁸ n=30 RCT, 8w Medium	≥20 years of age with asthma not well controlled (ACQ>0.75) on medium dose ICS (budesonide 800μg/d, fluticasone or mometasone 400μg/d) without another controller, SABA use 2-6 times/w	Budesonide/formoterol 320/9μg BID + 160/4.5μg PRN (DPI) n=15	41.9 (8.7)	33.3	6.9 (3.6)	NR	NR	NR	NR
		Fluticasone/salmeterol 250/50μg BID (DPI) + procaterol 20μg PRN n=15	41.3 (9.9)	33.3	6.7 (3.1)	NR	NR	NR	NR

Study, Year, n, Acronym, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (μg/d) [mean (SD)]
Takeyma, 2014 ¹⁰¹ n=63 RCT, 1y Unclear	16-80 years of age with moderate to severe persistent asthma, on ICS (budesonide 320-640µg/d) or fluticasone 200-500µg/d) +LABA, at least 1 exacerbation in prior year, ACT score<20, reliever use ≥5 times per week, FEV1 60-100% predicted	Budesonide/formoterol 320/9μg BID + 160/4.5μg PRN n=32	41 (NR)	40.6	NR	1.86 (0.33)	68.3 (8.7)	NR	NR
	ICS dose at entry: 574-610μg/d	Budesonide/formoterol 320/9μg BID + salbutamol 100μg PRN n=31	39 (NR)	32.3	NR	1.89 (0.40)	70.4 (10.2)	NR	NR
Stallberg, 2008 ¹⁰⁰ SHARE n=1343 RCT, 12m	≥12 years of age with persistent asthma on free combination ICS+LABA or symptomatic despite ICS alone, on ICS ≥400µg/d	Budesonide/formoterol 160/9μg or 320/9μg QD + PRN OR 80/4.5μg or 160/4.5μg BID + PRN n=887	43 (NR)	40	NR	NR	NR	NR	291 (NR)
Medium	ICS dose at entry: 636-650µg/d LABA use at entry: 51-52% Randomized therapy stratified by baseline ICS dose ⁱ	Budesonide/formoterol 160/9μg or 320/9μg BID + terbutaline PRN n=456	45 (NR)	44	NR	NR	NR	NR	368 (NR)

Abbreviations: ACQ=Asthma Control Questionnaire; ACT=Asthma Control Test; BID=twice daily; CI=confidence interval; d=day; DPI=dry powder inhaler; FEV1=forced expiratory volume in one second; ICS=inhaled corticosteroid; L=liter; LABA=long-acting β_2 -agonist; m=month; MDI=metered dose inhaler; n=patient sample size; NR=not reported; PRN=pro re nata (i.e., as-needed); QD=daily; RCT=randomized controlled trial; SABA=short-acting β_2 -agonist; SD=standard deviation; μ g=microgram; w=week; y=year

^aData reported as mean (range)

^bData reported as median (range)

^cRepresents inhalations/d (vs. night)

^dRepresents patients 12y+

^eBeclomethasone dipropionate equivalent dose in µg

In the control group (fluticasone/salmeterol BID + salbutamol PRN), 27% and 14% of patients completed the study on the maximum 1000/100µg/d dose and lowest dose of fluticasone/salmeterol, respectively

gData reported as median (95% CI)

^hRepresents values on treatment

Patients previously treated with ICS 400-500μg/d received budesonide/formoterol 80/4.5μg dose and those previously treated with ICS >500μg/d received budesonide/formoterol 160/4.5μg dose

Table C-12. Study and population characteristics for KQ1c, ICS and LABA controller and quick relief vs. ICS and LABA controller (higher dose)

dose)			1						
Study, Year, N, Acronym, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predict ed (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (µg/d) [mean (SD)]
Bousquet, 2007 ⁷⁶ AHEAD n=2309 RCT, 6m	≥12 years of age with persistent asthma on ICS alone (800-1600µg/d) or ICS (400-1000µg/d) +LABA, symptomatic with use of SABA during run-in ≥5 of 7 days, FEV1≥50% predicted	Budesonide/formoterol 320/9μg BID + PRN (DPI) n=1154	40 (12 to 80) ^a	38	14 (1 to 67) ^b	2.08 (0.60 to 4.65) ^a	70.2 (45 to 114) ^a	NR	792 (NR), 1238 (NR) ^c
Low	ICs dose at entry: 705-720µg/d LABA use at entry: 54-56%	Fluticasone/salmeterol 500/50μg BID (DPI) + terbutaline 0.4mg PRN (DPI) n=1155	39 (12 to 80) ^a	38	13 (1 to 77) ^b	2.10 (0.72 to 4.89) ^a	71.0 (45 to 222) ^a	NR	1000 (NR), 2000 (NR) ^c
Kuna, 2007 ⁸¹ COMPASS n=3335 RCT, 6m Low	≥12 years of age with asthma on ICS ≥500µg/d fluticasone or budesonide (or ≥1000µg/d of other ICS), FEV1 ≥50% predicted, at least 1 exacerbation in prior year, SABA used ≥5 of last 7 run-in days	Budesonide/formoterol 160/4.5μg BID + PRN (DPI) n=1107	38 (17)	43	NR	NR	72 (14)	NR	483 (NR), 755 (NR) ^c
	ICS dose at entry: 740-750µg/d LABA use at entry:46-47%	Budesonide/formoterol 320/9µg BID + terbutaline PRN (DPI) n=1105	38 (17)	41	NR	NR	73 (14)	NR	640 (NR), 1000 (NR) ^c
		Fluticasone/salmeterol 250/50 µg BID (MDI) + terbutaline PRN (DPI) n=1123	38 (17)	43	NR	NR	73 (14)	NR	500 (NR), 1000 (NR) ^c
Pavord, 2009 ⁸⁹ n=127 RCT, 1yr	18-65 years of age with asthma on ICS alone 800-1600µg/d or ICS 400-1000µg/d +LABA, FEV1≥60% predicted. SABA or symptoms ≥4 of last 7 run-in days	Budesonide/formoterol 160/4.5µg BID + PRN (DPI) n=64	39 (19 to 63) ^a	55	20 (1 to 62) ^b	2.9 (1.2 to 4.7) ^a	81.4 (58 to 121) ^a	1.5 (0-6.0) ^a	NR
2011	with mean morning PEF 50-85%								

Study, Year, N, Acronym, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predict ed (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (µg/d) [mean (SD)]
	ICS dose at entry: 741-867µg/d LABA use at entry: 81-84%	Budesonide/formoterol 320/9μg BID (MDI) + budesonide 400μg BID (DPI) + terbutaline 0.5mg PRN (DPI) n=63	41 (20- 65) ^a	54	21 (1 to 54) ^b	2.8 (1.4 to 4.3) ^a	80.6 (60 to 110) ^a	1.2 (0 to 7.4) ^a	NR
Lundborg, 2006 ¹¹⁵ N=491 RCT, 26w	≥6 years of age with asthma not well controlled on ICS alone (25-36%) or well controlled on ICS+LABA (64-75%), treated with ICS 500-1200µg/d (250-600µg/d for 6-11y), FEV1 ≥60% predicted	Budesonide/formoterol 160/4.5µg QD + PRN (DPI) (80/4.5µg/d used for 4-11y) n=162	39.7 (19.6)	43	NR	3.0 (0.9) ^d	95.7 (13.7) ^d	NR	339.0 (NR) ^f , 129.0 (NR) ^g
Medium	ICS dose at entry: 4-11y 419- 435µg/d; 12y+ 708-721µg/d; Allowed to continue disodium cromoglycate and montelukast at stable pre-study dose ^e	Budesonide/formoterol 160/4.5µg BID + PRN (DPI) (80/4.5µg/d used for 4-11y) n=165	38.2 (20.6)	49	NR	3.0 (0.9)	96.2 (14.7)	NR	405.2 (NR) ^f , 194.1 (NR) ^g
		Budesonide/formoterol 320/9μg BID + formoterol 4.5μg PRN n=164	40.8 (19.9)	49	NR	3.0 (0.9)	96.5 (15.2)	NR	637.5 (NR)/ 325.8 (NR)
Stallberg, 2008 ¹⁰⁰ SHARE N=1343 RCT, 12m	≥12 years of age with persistent asthma on free combination ICS+LABA or symptomatic despite ICS alone, on ICS ≥400µg/d	Budesonide/formoterol 160/9μg or 320/9μg QD + PRN OR 80/4.5μg or 160/4.5μg BID + PRN n=887	43 (NR)	40	NR	NR	NR	NR	291 (NR)
Medium	ICS dose at entry: 636-650µg/d LABA use at entry: 51-52% Randomized therapy stratified by baseline ICS dose ^h	Budesonide/formoterol 160/9μg or 320/9μg BID + terbutaline PRN n=456	45 (NR)	44	NR	NR	NR	NR	368 (NR)

Abbreviations: BID=twice daily; d=day; DPI=dry powder inhaler; FEV1=forced expiratory volume in one second; ICS=inhaled corticosteroid; L=liter; LABA=long-acting β2-agonist; m=month; MDI-metered dose inhaler; n=patient sample size; NR=not reported; PEF=peak expiratory flow; PRN=pro re nata (i.e., as-needed); QD=daily; RCT=randomized controlled trial; SABA=short-acting β2-agonist; SD=standard deviation; μg=microgram; w=week; y=year

^aData reported as mean (range)

^bData reported as median (range)

^cBeclomethasone dipropionate equivalent dose in μg

^dRepresents values post-bronchodilator

Table C-13. Study and population characteristics for KQ1c, ICS and LABA controller and quick relief vs. ICS and LABA controller (lower dose)

Study, Year, N, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predict ed (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (μg/d) [mean (SD)]
Hozawa, 2016 ¹¹⁷ n=30 RCT, 4w	≥20 years of age with persistent asthma on ICS alone (BUD 800mcg/d, FP or MF 400mg/d), symptomatic with use of SABA 2 to 6 times/w and ACQ≥1.5	Budesonide/formoterol 320/9μg BID + PRN (DPI) n=15	41.7 (5.9)	46.7	8.7 (3.2)	NR	88.5 (5.6)	NR	688.8mcg (NR)
Medium	ICS dose at entry: 705-720µg/d	Fluticasone/vilanterol 100/25µg QD (DPI) + procaterol 20mcg PRN n=15	40.4 (7.6)	40.0	8.0 (2.7)	NR	90.2 (6.4)	NR	NR

Abbreviations: BID=twice daily; d=day; DPI=dry powder inhaler; FEV1=forced expiratory volume in one second; ICS=inhaled corticosteroid; L=liter; n=patient sample size; NR=not reported; PRN=pro re nata (i.e., as-needed); QD=daily; RCT=randomized controlled trial; SABA=short-acting β_2 -agonist; SD=standard deviation; μ g=microgram; w=week; y=year

ePercentage of patients continued on concurrent disodium cromoglycate and montelukast not reported

^fRepresents values from adults (≥12y)

^gRepresents values from children (6-11y)

hPatients previously treated with ICS 400-500μg/d received budesonide/formoterol 80/4.5μg dose and those previously treated with ICS >500μg/d received budesonide/formoterol 160/4.5μg dose

Table C-14. Study and population characteristics for KQ1c, ICS and LABA controller and quick relief vs. CBP

Table C-14. Study and population characteristics for KQ1c, ICS and LABA controller and quick relief vs. CBP										
Study, Year, n, Acronym, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predict- ed (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (μg/d) [mean (SD)]	
Loh, 2008 ¹¹⁴ n=38 Retrospective observational cohort study, 3m	≥14 years of age with moderate to severe asthma and inadequately controlled despite step 3 or 4 (52.6% step 3, 47.4% step 4, per GINA guidelines) treatment	Budesonide/formoterol maintenance + PRN (DPI) n=22	49 (36 to 65) ^a	13.6	NR	1.16 (0.71 to 2.35) ^a	41 (21 to 74) ^a	NR	1200 (200- 1400) ^a	
Medium	ICS dose at entry: 400-1200 μg/d LABA at entry: 100%	Budesonide/formoterol maintenance (DPI) + SABA PRN (MDI/DPI) n=16	50 (14 to 66) ^a	43.8	NR	1.41 (0.52 to 2.79) ^a	48 (20 to 91) ^a	NR	NR	
Sears, 2008 ⁹⁷ n=1538 RCT, 6m Medium	≥12 years of age with mild-severe persistent asthma (18% mild, 43% moderate, 39% severe per GINA guidelines) on ICS ≥400µg/d and sub-optimal control or on daily maintenance ICS+LABA	Budesonide/formoterol 160/4.5μg BID + PRN (DPI) n=772	42.1 (16.4)	42.2	NR	NR	NR	1.25 (1.67)	748 with (0 to 2710) ^{b,c}	
	ICS dose at entry: 566-572µg/d LABA use at entry:73-75%	Conventional best practice ^d n=766	43.1 (16.0)	37.5	NR	NR	NR	1.22 (1.69)	1015 (30 to 4000) ^{b,c}	
Stallberg, 2008 ¹⁰⁰ SHARE n=1776 RCT, 12m	≥12 years of age with persistent asthma on free combination ICS+LABA or symptomatic despite ICS alone, on ICS ≥400µg/d	Budesonide/formoterol 160/9μg or 320/9μg QD + PRN OR 80/4.5μg or 160/4.5μg BID + PRN n=887	43 (NR)	40	NR	NR	NR	NR	291 (NR)	
Medium	ICS dose at entry: 636-650µg/d LABA use at entry: 51-52% Randomized therapy stratified by baseline ICS dose ^e	Budesonide 100-400µg (DPI) + formoterol 4.5 or 9µg (DPI) at a dose judged by investigator + terbutaline PRN ^f n=433	43 (NR)	41	NR	NR	NR	NR	550 (NR)	

Study, Year, n, Acronym, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predict- ed (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (μg/d) [mean (SD)]
Louis, 2009 ⁸² SALTO n=908 RCT, 26w	≥12 years of age with persistent asthma, symptomatic on ICS alone ≥500µg/d beclomethasone equivalents or without regard to symptoms on ICS+ another controller therapy	Budesonide/formoterol 160/4.5μg BID + PRN (DPI) n=450	43.4 (NR)	44.0	21.0 (0 to 86) ^a	NR	NR	1.09 (0-15) ^b	749 (NR) ^c
	ICS dose at entry:570-589µg/d	Conventional best practice ⁹ n=458	42.9 (NR)	41.0	20.2 (0 to 78) ^a	NR	NR	1.02 (0-11) ^b	1059 (NR) ^c
Quirce, 2011 ⁹¹ n=654 RCT, 26w Medium	≥18 years of age with persistent asthma (mild 26%, moderate 32%, severe 42%) on ICS±LABA, ICS ≥400µg/d budesonide or equivalent, history of suboptimal control per investigator, SABA use ≥3 occasion in prior week	Budesonide/formoterol 160/4.5μg BID + PRN (DPI) n=328	43.7 (18-89) ^b	33.5	9.7 (0.3 to 57.4) ^a	NR	NR	1.6 (1.2)	799 (NR) ^c
	ICS dose at entry: 1028- 1040µg/d beclomethasone equivalents LABA use at entry: 80-81%	Conventional best practice ^h n=326	44.3 (8-82) ^b	38	11.2 (0.3 to 60.6) ^a	NR	NR	1.6 (1.2)	1184 (NR) ^c
Soes-Peterson, 2011 ⁹⁸ MONO n=1854 RCT, 26w Medium	≥12 years of age with persistent asthma on ICS ≥320µg/d ±LABA, including patients on ICS alone with history of suboptimal asthma control indicating need for additional treatment ICS dose at entry: 1018-1051µg/d beclomethasone equivalents	Budesonide/formoterol 160/4.5μg BID + PRN (DPI) n=921	43.0 (15.9)	39.3	NR	NR	NR	1.1 (1.4)	753 (0 to 2500) ^{b,c}
	LABA use at entry: 74-75%	Conventional best standard ⁱ n=914	42.0 (15.9)	41.4	NR	NR	NR	1.1 (1.5)	1092 (42 to 6000) ^{b,c}
Riemersma, 2012 ⁹⁵ n=102 RCT, 12m	≥18 years of age with mild to moderate persistent, stable asthma on daily ICS, FEV1≥60% predicted, 36% well-controlled (ACQ≤0.75)	Budesonide/formoterol 80/4.5μg QD + PRN n=54	44.7 (13.2)	41	NR	NR	96.0 (16.0)	0.6 (1.3)	326 (NR) ^c

Study, Year, n, Acronym, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predict- ed (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (µg/d) [mean (SD)]
Medium	ICS dose at entry: 757-851µg/d beclomethasone equivalents	Usual care ^j n=48	40.6 (12.0)	35	NR	NR	101.5 (17.5)	0.4 (0.7)	798 (NR) ^c
Kardos, 2013 ⁷⁹ n=482 Prospective observational cohort study, 6m Low	≥18 years of age requiring step 3 or 4 (78% step 3, 22% step 4, per GINA guidelines) treatment and with history of at least 1 severe exacerbation in prior 24 months (but not in the previous month)	Budesonide/formoterol maintenance + PRN at a dose judged by investigator ^k n=310	49.1 (15.2)	38.4	NR	2.64 (0.87)	NR	NR	615 (318) ^l
	LABA at entry: 100%	ICS + LABA maintenance + SABA PRN at a dose judged by the investigator ^m n=172	51.4 (15.4)	34.3	NR	2.45 (0.73)	NR	NR	678 (380) ¹

Abbreviations: ACQ=Asthma Control Questionnaire; BID=twice daily; d=day; DPI=dry powder inhaler; FEV1=forced expiratory volume in one second; GEMA=Guía Española para el Manejo del Asma; GINA= Global Initiative for Asthma; ICS=inhaled corticosteroid; L=liter; LABA=long-acting β₂-agonist; LAMA=long-acting muscarinic antagonist; LTRA=leukotriene receptor antagonist; m=months; MDI=meter-dose inhaler; n=patient sample size; NR=not reported; PRN=pro re nata (i.e., as-needed); QD=daily;

RCT=randomized controlled trial; SABA=short-acting β₂-agonist; SD=standard deviation; w=week; y=year

^aData reported as median (range)

^bData reported as mean (range)

^cBeclomethasone dipropionate equivalent dose in µg

^dTherapy managed by investigator following Canadian Asthma Consensus Guidelines and could involve ICS+LABA combination products but not combination products used as single maintenance and reliever therapy. During the trial, 18% of patients were on ICS alone and 82% of patients were on ICS+LABA

^ePatients previously treated with ICS 400-500μg/d received budesonide/formoterol 80/4.5μg dose and those previously treated with ICS >500μg/d received budesonide/formoterol 160/4.5μg dose

^fTherapy used at appropriate dose according to asthma severity as judged by the investigator. Doses could be adjusted up or down within the range but budesonide could not be completely withdrawn

gPhysician's choice of stepwise maintenance therapy with multiple controller therapies allowed. However, an ICS+LABA combination single maintenance and reliever therapy and oral steroids were not allowed. Investigators were encouraged to use the GINA guidelines. Prescribed maintenance medications included ICS+LABA combination inhaler (86%), LTRA (27%), separate ICS inhaler (7%), separate LABA inhaler (7%), inhaled LAMA (4%), xanthines (3%) and mucolytics (1%)

hActive stepped and individualized treatment in accordance with GINA and GEMA guidelines. Patients had to be treated with at least ICS as maintenance treatment and could be treated with any asthma medication except ICS+LABA combination single maintenance and reliever therapy and oral steroids. During the trial, 91% of patients were treated with ICS+LABA either in single or separate inhalers, 27% with LTRAs, 2% with inhaled anticholinergics and 2.5% with mucolytics

¹Any guideline-defined treatment was allowed, except ICS+LABA combination single maintenance and reliever therapy. During the trial, 81% of patients were treated with LABA in addition to their ICS, 11% used LTRAs and 88% used SABAs for rescue

^jContinued medication as before randomization and treated as usual by general practitioner

Table C-15. Study level outcomes for KQ1c, ICS and LABA controller and quick relief vs. ICS and LABA controller and quick relief vs. ICS controller (same dose)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma control	Quality of life	Healthcare utilization
Scicchitano, 2004 ⁸⁶ n=1890 RCT, 12m	Age: 12y+ Severity/control: Moderate to severe persistent asthma/ symptomatic ICS daily dose: Low vs. low	Relative measures Requiring systemic corticosteroids, hospitalization, or ER visit: RR 0.64 (0.53 to 0.78) HR 0.61 (0.49 to 0.75) IRR 0.55 (0.46 to 0.66) Requiring systemic corticosteroids, hospitalization, ER visit, or PEF <70%: RR 0.65 (0.55 to 0.78) HR 0.61 (0.50 to 0.74) Mild exacerbation: HR 0.68 (0.61 to 0.75) Count data Hospitalization or ER visit: 15 vs. 25 Total number of oral corticosteroid days: 1776 vs. 3177	All-cause: Peto's OR 0.51 (0.05 to 4.92) Asthma-specific: No events occurred	Composite measures: NR Spirometry: FEV1 MD 0.1 (0.07 to 0.13)	NR	Rescue medication, inhalations/d: 0.9 vs. 1.42, p<0.001

 $[^]k$ Investigators were provided with the package insert for budesonide/formoterol including dosage and Symbicort maintenance and reliever therapy treatment principles. No other restrictions were applied. No concomitant therapies were disallowed (with the exception of systemic corticosteroids and β -blockers), but investigators were asked to take into account relevant information from the budesonide /formoterol summary of product characteristics

¹Represents prescribed inhaled corticosteroid dose

 $^{^{}m}$ Only directions given to investigators regarding the comparator group was that these patients had to be treated with inhaled corticosteroids plus long-acting β₂-agonist and asneeded short-acting β₂-agonist via separate inhalers and should be treated according to the relevant information in the product package inserts

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma control	Quality of life	Healthcare utilization
Rabe, 2006 ⁹⁴ n=697 RCT, 6m	Age: 12y+ Severity/control: Mild to moderate persistent asthma/ symptomatic ICS daily dose: Low vs. low	Relative measures Requiring systemic corticosteroids, hospitalization, ER visit, or PEF <70%: RR 0.49 (0.32 to 0.76) Count data Total number of oral corticosteroid days: 114 vs. 498	NR	Composite measures: NR Spirometry: FEV1, change from baseline 0.21 vs. 0.06, p<0.001	NR	Rescue medication, inhalations/d: MD -0.34 (-0.51 to - 0.17)
Sovani, 2008 ⁹⁹ n=71 RCT, 6m	Age: 12y+ Severity/control: Persistent asthma/ poor asthma control ICS daily dose: Low vs. low	Relative Measures NR Count data Number of oral corticosteroid courses: 6 vs. 6	NR	Composite measures: ACQ-7 score: MD 0.15 (-0.5 to 0.7) Spirometry: FEV1 MD 0.01 (-0.2 to 2.00)	AQLQ-mini score: MD 0.35 (-0.3 to 1.00)	NR

Abbreviations: ACQ=Asthma Control Questionnaire; AQLQ=Asthma Quality of Life Questionnaire; d=day; EPR=Expert Panel Review (Guidelines for the Diagnosis and Management of Asthma); ER=emergency room; FEV1=forced expiratory volume in one second; HR=hazard ratio; ICS=inhaled corticosteroid; IRR= incident rate ratio; m=month; MD=mean difference; n=patient sample size; NR=not reported; OR=odds ratio; PEF=peak expiratory flow; RCT=randomized controlled trial; RR=relative risk; y=year aAge is categorized using study inclusion criteria and the age categories used in EPR-3 of 0-4y, 5-11y and 12y+. Severity is as reported per the study. Control was usually not specified and rather details about patients being symptomatic or not at entry were given and reported here. ICS daily dose is categorized using the study's required ICS dose and the EPR-3 categories of low, medium and high

^bRelative measures are presented first and include, when reported by the study, RR, HR for time to the event, and IRR for count data allowing multiple events over the period of follow-up. Count data is presented, when reported by the study, for number of hospitalizations, hospital days, and ER visits in association with exacerbations

Table C-16. Study level outcomes for KQ1c, ICS and LABA controller and quick relief vs. ICS controller (higher dose)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma control	Quality of life	Healthcare utilization
O'Byrne, 2005 ^{75,83} n=1851 RCT, 12m	Age: Mixed (5-11y and 12+y) Severity/control: Persistent asthma/ symptomatic during run-in° ICS daily dose: Low vs. high	Full population Relative measures Composite systemic corticosteroids, hospitalization, ER visit, or increase in ICS or other medication for 4-11y: RR 0.58 (0.46 to 0.72) HR 0.55 (0.43 to 0.70) IRR 0.54 (0.44 to 0.66) Composite systemic corticosteroids, hospitalization, ER visit, or increase in ICS or other medication for 4-11y, PEF<70%: RR 0.57 (0.48 to 0.69) HR 0.53 (0.43 to 0.65) IRR 0.53 (0.44 to 0.64) Mild exacerbation: IRR 0.64 (0.57 to 0.73) Count data Requiring hospitalization or ER visit: 25 vs. 29 Average courses of corticosteroid/y: 0.19 vs. 0.38	NR	Composite measures: NR Spirometry: NR	NR	NR

Study, Year, n, Study design, Duration	Exacerbations ^b	Mortality	Asthma control	Quality of life	Healthcare utilization
	4-11y subgroup (n=224) Relative measures Composite hospitalization, ER visit, systemic corticosteroid, or increase in ICS or other treatment: RR 0.43 (0.21 to 0.87) Composite systemic corticosteroid, hospitalization, ER visit, increase in ICS or other treatment, or PEF <70%: RR 0.55 (0.32 to 0.94) HR 0.49 (0.27 to 0.90) Mild exacerbation: RR 0.86 (0.72 to 1.04) Count data Requiring hospitalization or ER: 1 vs. 8 Average courses of corticosteroid/y: 0.05 vs. 0.25 Total number of days requiring oral cortisteroids: 32 vs. 141	NR	Composite measures: NR Spirometry: NR	NR	NR

Abbreviations: EPR=Expert Panel Review (Guidelines for the Diagnosis and Management of Asthma); ER=emergency room; HR=hazard ratio; ICS=inhaled corticosteroid; IRR=incident rate ratio; m=month; n=patient sample size; NR=not reported; PEF=peak expiratory flow; RCT=randomized controlled trial; RR=relative risk; y=year aAge is categorized using study inclusion criteria and the age categories used in EPR-3 of 0-4y, 5-11y and 12y+. Severity is as reported per the study. Control was usually not specified and rather details about patients being symptomatic or not at entry were given and reported here. ICS daily dose is categorized using the study's required ICS dose and the EPR-3 categories of low, medium and high

^bRelative measures are presented first and include, when reported by the study, RR, HR for time to the event, and IRR for count data allowing multiple events over the period of follow-up. Count data is presented, when reported by the study, for number of hospitalizations, hospital days, and ER visits in association with exacerbations ^cDefined as 12+ short-acting β₂-agonist inhalations during last 10 days of the run-in for 4-11y olds

Table C-17. Study level outcomes for KQ1c, ICS and LABA controller and quick relief vs. ICS and LABA controller (same dose)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma control	Quality of life	Healthcare utilization
O'Byrne, 2005 ^{75,83} n=1834 RCT, 12m	Age: Mixed (5-11y and 12y+) Severity/control: Persistent asthma/ symptomatic during run-in ^c ICS daily dose: Low vs. low	Full population Relative measures Composite systemic corticosteroid, hospitalization, ER visit, or increase in ICS or other medication for 4-11y: RR 0.52 (0.42 to 0.65) HR 0.50 (0.40 to 0.63) IRR 0.47 (0.39 to 0.57) Composite systemic corticosteroid, hospitalization, ER visit, increase in ICS or other medication for 4-11y, PEF <70%: RR 0.59 (0.49 to 0.71) HR 0.55 (0.44 to 0.67) IRR 0.53 (0.44 to 0.65) Mild exacerbation: IRR 0.70 (0.62 to 0.80) Count data Requiring hospitalization or ER visit: 25 vs. 32 Average courses of corticosteroid/yr: 0.19 vs. 0.42	NR	Composite measures: NR Spirometry: NR	NR	NR

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma control	Quality of life	Healthcare utilization
		4-11y subgroup (n=235) Relative measures Composite hospitalization, ER visit, systemic corticosteroid, or increase in ICS or other treatment: RR 0.28 (0.14 to 0.53) Composite systemic corticosteroid, hospitalization, ER visit, increase in ICS or other treatment, or PEF <70%: RR 0.38 (0.23 to 0.63) HR 0.34 (0.19 to 0.60) Mild exacerbation: RR 0.75 (0.64 to 0.88) Count data Requiring hospitalization or ER visit: 1 vs. 8 Average courses of corticosteroid/y: 0.05 vs. 0.30 Total number of days requiring oral corticosteroid: 32 vs. 230	NR	Composite measures: NR Spirometry: NR	NR	NR

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma control	Quality of life	Healthcare utilization
Vogelmeier, 2005 ¹⁰⁴ n=2143 RCT, 12m	Age: 12y+ Severity/control: Persistent asthma/ symptomatic during run-in ^d ICS daily dose: Medium vs. medium	Relative Measures Composite systemic cortisteroid, hospitalization, or ER visit: RR 0.80 (0.64 to 0.99) HR 0.77 (0.61 to 0.97) Composite hospitalization, ER, systemic corticosteroid, or unscheduled visit: RR 0.79 (0.65 to 0.95) HR 0.75 (0.61 to 0.93) IRR 0.88 (0.56 to 0.91) Requiring hospitalization or ER visit: RR 0.68 (0.43 to 1.06) Count data: Hospitalization or ER visit: 44 vs. 50 Unscheduled visit: 39 vs. 62 Asthma-related hospital day: 59 vs. 94 Asthma-related ER visit: 38 vs. 45 Unscheduled visit: 117 vs. 154 Total number of oral corticosteroid day: 1980 vs. 2978	All-cause: Peto's OR 0.14 (0.01 to 2.18) Asthma- specific: No events occurred	Composite measures: NR Spirometry: NR	NR	NR

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma control	Quality of life	Healthcare utilization
Rabe, 2006 ⁹³ n=3394 RCT, 12m	Age: 12y+ Severity/control: Persistent asthma/ symptomatic during run-in ICS daily dose: Low vs. low	Relative Measures Composite systemic corticosteroid, hospitalization, or ER visit: RR 0.60 (0.50 to 0.72) HR 0.55 (0.45 to 0.68) IRR 0.52 (0.44 to 0.62) Requiring hospitalization or ER visit: RR 0.61 (0.44 to 0.85) HR 0.57 (0.41 to 0.81) IRR 0.61 (0.45 to 0.82) Mild exacerbation: RR 0.94 (0.90 to 0.99) HR 0.88 (0.80 to 0.97) IRR 0.82 (0.74 to 0.91) Count Data Hospitalization or ER visit: 70 vs. 115	All-cause: Peto's OR 0.53 (0.05 to 5.08) Asthma- specific: No events occurred	Composite measures: ACQ-5 score: MD -0.15 (-0.21 to - 0.08) Spirometry: FEV1: MD 0.08 (0.05 to 0.10)	NR	Rescue medication use, inhalations/d: MD -0.20 (-0.28 to -0.12)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma control	Quality of life	Healthcare utilization
Atienza, 2013 ⁷⁰ n=2091 RCT, 12m	Age: 12y+ Severity/control: Persistent asthma/ not adequately controlled, symptomatic during run-ine ICS daily dose: Low vs. low	Relative Measures Requiring systemic corticosteroids: RR 0.77 (0.62 to 0.95) HR 0.74 (0.59 to 0.93) IRR 0.73 (0.60 to 0.88) Requiring hospitalization: RR 0.33 (0.17 to 0.65) HR 0.33 (0.17 to 0.65) HR 0.33 (0.17 to 0.65) Requiring ER visit: RR 0.74 (0.59 to 0.93) HR 0.69 (0.54 to 0.88) IRR 0.66 (0.54 to 0.80) Composite systemic corticosteroid, hospitalization, or ER visit: RR 0.74 (0.62 to 0.88) HR 0.70 (0.57 to 0.85) IRR 0.47 (0.40 to 0.55) Requiring hospitalization or ER visit: RR 0.72 (0.58 to 0.90) HR 0.68 (0.53 to 0.86) IRR 0.65 (0.54 to 0.79) Mild exacerbation: RR 0.89 (0.84 to 0.79) Mild exacerbation: RR 0.89 (0.84 to 0.93) HR 0.81 (0.73 to 0.89) Count data Requiring hospitalization: 11 vs. 39 Requiring ER visit: 163 vs. 244 Requiring hospitalization or ER visit: 171 vs. 260 Total number of oral prednisone days: 1215 vs. 1697	All-cause: Peto's OR 0.99 (0.06 to 15.89) Asthmaspecific: No events occurred	Composite measures: ACQ-5 score: MD -0.124 (-0.179 to -0.069) ACQ-5 responder: RR 1.14 (1.05 to 1.24) Spirometry: FEV1: MD 0.04 (0.015 to 0.064)	NR	Rescue medication use, inhalations/d: MD -0.25 (-0.35 to -0.15)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma control	Quality of life	Healthcare utilization
Papi, 2013 ⁸⁴ n=1701 RCT, 48w	Age: 12y+ Severity/control: Persistent asthma/ not fully controlled ICS daily dose: Low vs. low	Relative Measures Requiring systemic corticosteroid: RR 0.62 (0.49 to 0.79) IRR 0.65 (0.54 to 0.80) Composite systemic corticosteroid, hospitalization, or ER visit: RR 0.65 (0.51 to 0.82) HR 0.64 (0.49 to 0.83) IRR 0.66 (0.55 to 0.80) Requiring hospitalization or ER visit: RR 0.69 (0.49 to 0.96) IRR 0.67 (0.54 to 0.84) Requiring hospitalization: RR 1.18 (0.2 to 2.2) Mild exacerbation: RR 1.00 (0.94 to 1.06) HR 0.97 (0.87 to 1.09) IRR 0.86 (0.76 to 0.98) Count Data Requiring hospitalization or ER visit: 67 vs. 99 Hospitalization: 5 vs. 17 Intubation: No events occurred	NR	Composite measures: ACQ-7 score: MD -0.06 (-0.13 to 0.02) Spirometry: FEV1: MD 0.001 (-0.04 to 0.04) FVC: MD -0.01 (-0.07 to 0.04)	NR	Rescue medication use, inhalations/d: MD -0.02 (-0.13 to 0.09)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma control	Quality of life	Healthcare utilization
Patel, 2013 ⁸⁶ n=303 RCT, 24w	Age: 12y+ Severity/control: Persistent asthma ICS daily dose: Medium vs. medium	Relative Measures Composite systemic corticosteroid, hospitalization, or ER visit: RR 0.56 (0.38 to 0.84) HR 0.53 (0.33 to 0.85) IRR 0.54 (0.36 to 0.81) Hospital or ER admission for asthma: RR 0.78 (0.30 to 2.05) HR 0.85 (0.37 to 2.00) Hospital admission for asthma: RR 1.01 (0.14 to 7.05) HR 1.54 (0.26 to 9.09) Oral corticosteroid dose (mg prednisone): MD -49.1 (-121.34 to 23.14) Rate of prednisone courses per year: HR 0.58 (0.41 to 0.84) Count data NR	All-cause: No events occurred Asthma- specific: No events occurred	Composite measures: ACQ-7 score: MD -0.23 (-0.47 to 0.01) Spirometry: FEV1: MD 0.15 (-0.06 to 0.36) FEV1 % predicted: MD 1.8 (-2.8 to 6.4)	NR	NR
Hozawa, 2014 ⁷⁸ n=30 RCT, 8w	Age: 12y+ Severity/control: Persistent asthma/ not well controlled and symptomatic ICS daily dose: Medium vs. medium	NR	NR	Composite measures: ACQ-5 score: MD -0.37 (-0.58 to - 0.16) Spirometry: FEV1 % predicted: MD 1.9 (-4.27 to 8.07)	NR	Rescue medication use, inhalations/w: MD -0.73 (-1.42 to -0.04)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations ^b	Mortality	Asthma control	Quality of life	Healthcare utilization
Takeyama, 2014 ^{101,102} n=63 RCT, 1y	Age: 12y+ Severity/control: Moderate to severe persistent asthma/ not well controlled and symptomatic ⁹ ICS daily dose: Low vs. low	Relative Measures Any exacerbation: HR 0.34 (0.11 to 0.92) Count data NR	NR	Composite measures: ACT: MD 6.3 (5.15 to 7.45) Spirometry: FEV1: MD 0.04 (0.02 to 0.06)	NR	Rescue medication use, inhalations/w: MD -2.2 (-3.92 to -0.48)
Stallberg, 2008 ¹⁰⁰ n=1343 RCT, 12m	Age: 12y+ Severity/control: Persistent asthma/ symptomatic or without symptoms ICS daily dose: Low vs. low to medium	Relative Measures: Composite systemic corticosteroid, hospitalization, or ER visit: RR 0.77 (0.53 to 1.12) IRR 0.81 (0.61 to 1.09) Count Data: Hospitalizations/pt/y: 0.007 vs. 0.000 Unplanned or ER visits/ pt/y: 0.448 vs. 0.346	NR	Composite measures: NR Spirometry:: NR	NR	

Abbreviations: ACQ=Asthma Control Questionnaire; ACT=Asthma Control Test; d=day; EPR=Expert Panel Review (Guidelines for the Diagnosis and Management of Asthma); ER=emergency room; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; HR=hazard ratio; ICS=inhaled corticosteroid; IRR= incident rate ratio; m=month; mg=milligram; MD=mean difference; n=patient sample size; NR=not reported; PEF=peak expiratory flow; pt=patient; RCT=randomized controlled trial; RR=relative risk; w=week; y=year

^aAge is categorized using study inclusion criteria and the age categories used in EPR-3 of 0-4y, 5-11y and 12y+. Severity is as reported per the study. Control was usually not specified and rather details about patients being symptomatic or not at entry were given and reported here. ICS daily dose is categorized using the study's required ICS dose and the EPR-3 categories of low, medium and high

^bRelative measures are presented first and include, when reported by the study, RR, HR for time to the event, and IRR for count data allowing multiple events over the period of follow-up. Count data is presented, when reported by the study, for number of hospitalizations, hospital days, and ER visits in association with exacerbations

 $^{^{\}circ}$ Defined as 12+ short-acting β_2 -agonist inhalations during last 10 days of the run-in or 8+ short-acting β_2 -agonist inhalations during last 10 days of the run-in for 4-11y olds

^dDefined as rescue medication use 4 or more of the last 7 days in the run-in period

^eDefined as rescue medication use 5 or more of the last 7 days in the run-in period

 $[^]f\!Defined$ as Asthma Control Questionnaire >0.75 and short-acting $\beta_2\text{-agonist}$ use 2-6 times per week

gDefined as Asthma Control Test <20 and reliever use at least 5 times per week

Table C-18. Study level outcomes for KQ1c, ICS and LABA controller and quick relief vs. ICS and LABA controller (higher dose)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations	Mortality	Asthma control	Quality of life	Healthcare utilization
Bousquet, 2007 ⁷⁶ n=2309 RCT, 6m	Age: 12y+ Severity/control: Persistent asthma/ symptomatic ICS daily dose: Medium vs. high	Relative measures: Requiring systemic corticosteroid: RR 0.82 (0.62 to 1.07) Composite systemic corticosteroid, hospitalization, or ER visit: RR 0.83 (0.65 to 1.06) HR 0.82 (0.63 to 1.05) IRR: 0.79 (0.63 to 0.99) Requiring hospitalization or ER visit: RR 0.66 (0.44 to 0.98) HR 0.64 (0.43 to 0.96) IRR: 0.69 (0.49 to 0.99) Count data: Total number of oral corticosteroid days: 764 vs. 990	All-cause: OR 7.39 (0.15 to 372.38) Asthma-specific: No events occurred	Composite measures: ACQ-5: MD -0.02 (-0.07 to 0.04) Spirometry:: NR	NR	PRN inhalations/d: MD -0.04 (-0.12 to 0.04)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations	Mortality	Asthma control	Quality of life	Healthcare utilization
Kuna, 2007 ⁸¹ n=3335 RCT, 6m	Age: 12y+ Severity/control: Persistent asthma/ symptomatic during run-in° ICS daily dose: Low vs. medium	Relative Measures vs. budesonide/formoterol: Composite systemic corticosteroid, hospitalization, or ER visit: RR 0.75 (0.58 to 0.96) HR 0.74 (0.56 to 0.96) IRR 0.72 (0.57 to 0.90) Requiring hospitalization or ER visit: RR 0.96 (0.65 to 1.41) HR 0.97 (0.65 to 1.44) IRR 0.88 (0.63 to 1.24) Mild exacerbation: RR 0.97 (0.91 to 1.04) Count data: Total number of oral corticosteroid days: 619d vs. 1044d	All-cause: OR 7.39 (0.15 to 372.38) Asthma-specific: No events occurred	Composite measures: ACQ-5: MD -0.02 (-0.08 to 0.05) Spirometry:: FEV1 MD 0.01 (-0.03 to 0.04)	AQLQ(S): MD 0.01 (-0.07 to 0.08)	PRN inhalations/d: MD -0.03 (-0.12 to 0.06)
		Relative Measures vs. salmeterol/fluticasone: Composite systemic corticosteroid, hospitalization or ER visit: RR 0.68 (0.53 to 0.87) HR 0.67 (0.52 to 0.87) IRR 0.61 (0.49 to 0.76) Requiring hospitalization or ER visit: RR 0.69 (0.48 to 0.98) HR 0.69 (0.48 to 0.99) IRR 0.61 (0.44 to 0.83) Mild exacerbation: RR 1.04 (0.97 to 1.11) Count data: Total number of oral corticosteroid days: 619d vs. 1132d	All-cause: OR 1.00 (0.06 to 16.00) Asthma-specific: No events occurred	Composite measures: ACQ-5: MD 0.03 (-0.03 to 0.09) Spirometry:: FEV1 MD 0.01 (-0.03 to 0.04)	AQLQ(S): MD -0.02 (-0.09 to 0.06)	PRN inhalations/d: 0.07 (-0.02 to 0.16) Total number of oral corticosteroid days: 619d vs. 1132d

Study, Year, n, Study design, Duration	Population ^a	Exacerbations	Mortality	Asthma control	Quality of life	Healthcare utilization
Pavord, 2009 ⁸⁹ n=127 RCT, 1yr	Age: 12y+ Severity/control: Persistent asthma/ symptomatic ICS daily dose: Low vs. medium	Relative Measures Rate of composite systemic steroids, hospitalization, ER visit: IRR 1.02 (0.52 to 2.02) Count data: NR	All-cause: No events occurred Asthma-specific: No events occurred	Composite measures: NR Spirometry:: NR	NR	NR
Lundborg, 2006 ¹¹⁵ n=491 RCT, 26w	Age: Mixed (5-11y and 12+) Severity/control: Persistent asthma/ well controlled and not well controlled ICS daily dose: Low vs. medium	Bud/for daily+PRN Relative measures: NR Count data: Number of hospital nights: 0 vs. 0 Number of ER visits: 9 vs. 11 Number of unscheduled MD visits: 11 vs. 17	NR	Composite measures: ACQ-5: MD -0.07 (-0.24 to 0.10) Spirometry:: NR	NR	NR
		Bud/for twice daily+PRN Relative measures: NR Count data: Number of hospital nights: 3 vs. 0 Number of ER visits: 17 vs. 11 Number of unscheduled MD visits: 20 vs. 17	NR	Composite measures: ACQ-5: MD -0.10 (-0.26 to 0.07) Spirometry:: NR	NR	NR

Study, Year, n, Study design, Duration	Population ^a	Exacerbations	Mortality	Asthma control	Quality of life	Healthcare utilization
Stallberg, 2008 ¹⁰⁰ n=1343 RCT, 12m	Age: 12y+ Severity/control: Persistent asthma/ symptomatic or without symptoms ICS daily dose: Low vs. low to medium	Relative Measures: Composite systemic corticosteroid, hospitalization, or ER visit: RR 0.77 (0.53 to 1.12) IRR 0.81 (0.61 to 1.09) Count Data: Hospitalization/pt/y: 0.007 vs. 0.000 Unplanned ER visit/ pt/y: 0.448 vs. 0.346	NR	Composite measures: NR Spirometry:: NR	NR	NR

Abbreviations: ACQ=Asthma Control Questionnaire; Bud/for=budesonide/formoterol; d=day; EPR=Expert Panel Review (Guidelines for the Diagnosis and Management of Asthma); ER=emergency room; FEV1=forced expiratory volume in one second; HR=hazard ratio; ICS=inhaled corticosteroid; IRR= incident rate ratio; m=months; MD=mean difference; n=patient sample size; NR=not reported; OR=odds ratio; PRN=pro re nata (i.e., as-needed); pt=patient; RCT=randomized controlled trial; RR=relative risk; w=week; y=year

^aAge is categorized using study inclusion criteria and the age categories used in EPR-3 of 0-4y, 5-11y and 12y+. Severity is as reported per the study. Control was usually not specified and rather details about patients being symptomatic or not at entry were given and reported here. ICS daily dose is categorized using the study's required ICS dose and the EPR-3 categories of low, medium and high

^bRelative measures are presented first and include, when reported by the study, RR, HR for time to the event, and IRR for count data allowing multiple events over the period of follow-up. Count data is presented, when reported by the study, for number of hospitalizations, hospital days, and ER visits in association with exacerbations ^cDefined as symptomatic as short-acting $β_2$ -agonist use was required at least 5 of 7 days

Table C-19. Study level outcomes for KQ1c, ICS and LABA controller and quick relief vs. ICS and LABA controller and quick relief vs. ICS controller (same dose)

Study, Year, n, Study design, Duration	Populationa	Exacerbations	Mortality	Asthma control	Quality of life	Healthcare utilization
Hozawa, 2016 ¹¹⁷ n=30 RCT, 4w	Age: 12y+ Severity/control: Persistent asthma/ symptomatic ICS daily dose: Medium vs. low	NR	NR	Composite measures: ACQ-5: MD -0.40 (-0.53 to - 0.27) Spirometry:: FEV1 % predicted: MD 3.10 (-1.36 to 7.56)	NR	PRN inhalations/w: MD -0.9 (-1.48 to - 0.32)

Abbreviations: ACQ=Asthma Control Questionnaire; d=day; FEV1=forced expiratory volume in one second; ICS=inhaled corticosteroid; MD=mean difference; n=patient sample size; NR=not reported; PRN=pro re nata (i.e., as-needed); pt=patient; RCT=randomized controlled trial; w=week

^aAge is categorized using study inclusion criteria and the age categories used in EPR-3 of 0-4y, 5-11y and 12y+. Severity is as reported per the study. Control was usually not specified and rather details about patients being symptomatic or not at entry were given and reported here. ICS daily dose is categorized using the study's required ICS dose and the EPR-3 categories of low, medium and high

Table C-20. Study level outcomes for KQ1c, ICS and LABA controller and quick relief vs. CBP

Study, Year, n, Study design, Duration	Population ^a	Exacerbations	Mortality	Asthma control	Quality of life	Healthcare utilization
Sears, 2008 ⁹⁷ n=1538 RCT, 6m	Age: 12y+ Severity/control: Mild to severe persistent asthma/ with or without suboptimal control ICS daily dose: Low vs. mixed	Relative Measures: Systemic corticosteroid: RR 1.03 (0.72 to 1.47) Hospitalization: OR 0.13 (0.00 to 6.77) ER visit: RR 0.69 (0.37 to 1.30) Composite systemic corticosteroid, hospitalization, or ER visit: RR 0.96 (0.69 to 1.35) HR 0.99 (0.85 to 1.15) IRR 0.92 (0.80 to 1.06) Count data: Hospitalization: 0 vs. 1 Hospital day: 0 vs. 5 ER visit: 16 vs. 28 Total number of oral corticosteroid days: 590 vs. 709, p=NR	All-cause: OR 0.51 (0.05 to 4.90) Asthma-specific: No deaths occurred	Composite measures: ACQ-5: MD -0.02 (-0.10 to 0.06) ACQ-5 responder: RR 1.22 (1.03 to 1.44) Spirometry:: NR	NR	PRN inhalations/d: MD -0.16 (-0.26 to -0.05)
Stallberg, 2008 ¹⁰⁰ n=1776 RCT, 12m	Age: 12y+ Severity/control: Persistent asthma/ symptomatic and without symptoms ICS daily dose: Low vs. mixed	Relative Measures: Composite systemic corticosteroid, hospitalization, or ER visit: RR 0.72 (0.51 to 1.03) IRR 0.89 (0.78 to 1.01) Count Data: Hospitalization/pt/y: 0.007 vs. 0.010 Unplanned ER visit/pt/y: 0.448 vs. 0.295	NR	Composite measures: NR Spirometry:: NR	NR	NR

Study, Year, n, Study design, Duration	Population ^a	Exacerbations	Mortality	Asthma control	Quality of life	Healthcare utilization
Louis, 2009 ⁸² n=908 RCT, 26w	Age: 12y+ Severity/control: Persistent asthma/ symptomatic and without symptoms ICS daily dose: Low vs. mixed	Relative measures: Systemic corticosteroid: RR 0.70 (0.33 to 1.49) Hospitalization: OR 1.99 (0.21 to 19.14) ER visit: RR 0.25 (0.03 to 2.27) Composite systemic corticosteroid, hospitalization, or ER visit: RR 0.64 (0.32 to 1.31) Count data: Hospitalization: 2 vs. 1 Number of hospital days: 10 vs. 15 ER visit: 1 vs. 4 Total number of oral corticosteroid days: 132 vs. 244	All-cause: OR 7.54 (0.47 to 120.72) Asthma-specific: No deaths occurred	Composite measures: ACQ-5: MD -0.12 (-0.20 to -0.04) Spirometry:: FEV1: MD -0.03 (-0.12 to 0.06)	NR	PRN inhalations/d: MD -0.10 (-0.24 to 0.03) ≥1 day with PRN inhalation: RR 2.96 (2.42 to 3.61)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations	Mortality	Asthma control	Quality of life	Healthcare utilization
Quirce, 2011 ⁹¹ n=654 RCT, 26w	Age: 12y+ Severity/control: Mild to severe persistent asthma/ history of suboptimal control ICS daily dose: Low vs. mixed	Relative measures: Systemic corticosteroid: RR 0.62 (0.33 to 1.16) Hospitalization: OR 7.34 (0.15 to 370.13) ER visit: RR 0.99 (0.47 to 2.11) Composite systemic corticosteroid, hospitalization, or ER visit: RR 0.71 (0.42 to 1.19) HR 0.75 (0.59 to 0.95) IRR 0.75 (0.60 to 0.95) Count data: Hospitalization: 1 vs. 0 ER visit: 14 vs. 15 Total number of oral corticosteroid days: 177 vs. 229, p<0.001	All-cause: No deaths occurred Asthma-specific: No deaths occurred	Composite measures: ACQ-5: MD -0.12 (-0.23 to -0.01) ACQ-5 responder: RR 1.09 (0.92 to 1.30) Spirometry:: NR	NR	≥1 day with PRN inhalation: RR 2.96 (2.42 to 3.61) Total number of oral corticosteroid days: 177 vs. 229, p<0.001

Study, Year, n, Study design, Duration	Population ^a	Exacerbations	Mortality	Asthma control	Quality of life	Healthcare utilization
Soes- Peterson, 2011 ⁹⁸ n=1854 RCT, 26w	Age: 12y+ Severity/control: Persistent asthma/ with and without history of suboptimal control ICS daily dose: Low vs. mixed	Relative Measures: Systemic corticosteroid: RR 0.79 (0.55 to 1.13) Hospitalization: OR: 0.71 (0.23 to 2.21) ER visit: RR 0.80 (0.43 to 1.51) Composite systemic corticosteroid, hospitalization, or ER visit: RR 0.79 (0.57 to 1.10) HR 0.79 (0.68 to 0.92) IRR 0.74 (0.65 to 0.85) Count data: Hospitalization: 5 vs. 8 Hospital day: 29 vs. 33 ER visit: 18 vs. 22	All-cause: OR 7.33 (0.15 to 369.58) Asthma-specific: No deaths occurred	Composite measures: ACQ-5: MD -0.09 (-0.15 to -0.03) Spirometry:: NR	NR	NR
Riemersma, 2012 ⁹⁵ n=102 RCT, 12m	Age: 12y+ Severity/control: Mild to moderate persistent asthma/ history of suboptimal control ICS daily dose: Low vs. mixed	Relative Measures: Composite systemic corticosteroid, hospitalization, or ER visit: RR 0.30 (0.06 to 1.40) Requiring ER or hospitalization: No events occurred Count data: Hospitalization: No events occurred ER visit: No events occurred	NR (G.11)	Composite measures: ACQ-5: MD -0.06 (-0.31 to 0.19) Spirometry:: FEV1 % predicted: MD 0.70 (-1.80 to 3.20)	NR	NR

Abbreviations: ACQ=Asthma Control Questionnaire; d=day; EPR=Expert Panel Review (Guidelines for the Diagnosis and Management of Asthma); ER=emergency room; FEV1=forced expiratory volume in one second; HR=hazard ratio; ICS=inhaled corticosteroid; IRR= incident rate ratio; m=months; MD=mean difference; n=patient sample size; NR=not reported; OR=odds ratio; PRN=pro re nata (as-needed); pt=patient; RCT=randomized controlled trial; RR=relative risk; w=week; y=year

^aAge is categorized using study inclusion criteria and the age categories used in EPR-3 of 0-4y, 5-11y and 12y+. Severity is as reported per the study. Control was usually not specified and rather details about patients being symptomatic or not at entry were given and reported here. ICS daily dose is categorized using the study's required ICS dose and the EPR-3 categories of low, medium and high

^bRelative measures are presented first and include, when reported by the study, RR, HR for time to the event, and IRR for count data allowing multiple events over the period of follow-up. Count data is presented, when reported by the study, for number of hospitalizations, hospital days, and ER visits in association with exacerbations

Table C-21. Study and population characteristics for KQ2a

Study, Year, n, Acronym, Study design, Duration	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean	ICS dose during study (μg/d) [mean
Risk of bias								(SD)]	(SD)]
Peters, 2010 ²⁷ n=210 TALC RCT- crossover, 14w	≥18 years of age with moderately severe asthma not well controlled on a ICS alone	Tiotropium 18μg daily (Handihaler) n=210	42.2 (12.3)	32.9	26.1 (14.1)	2.31 (0.77)	71.5 (14.9)	1.71 (2.09)	NR
Low	Tiotropium or salmeterol were added on to run-in dose of beclomethasone 80µg BID	Doubling ICS dose to 160μg BID (MDI) n=210							NR
Bateman, 2011 ¹¹⁸ n=254 RCT, 16w Low	18-65 years of age with moderate persistent asthma (GINA step 3) not controlled on ICS alone (400-1000μg/d budesonide or equivalent)	Tiotropium 5μg daily (Respimat) n=128	43.5 (12.6)	35.9	18.1 (12.1)	2.3 (0.77)	74.1 (16.1)	NR	NR
	Randomized therapy added on to ICS continued at prestudy dose	Placebo n=126	44.0 (11.9)	40.5	17.3 (12.2)	2.4 (0.8)	75.3 (19.0)	NR	NR
Kerstjens, 2015 ¹¹⁹ Study 1 MezzoTinA-asthma 1 n=795 RCT, 24w Low	18-75 year of age with moderate persistent asthma according to GINA guidelines despite treatment with stable medium dose ICS (400-800μg/d budesonide or equivalent) alone or in fixed combination with LABA, symptomatic with ACQ-7 ≥1.5	Tiotropium 5μg daily (Respimat) n=264	44.4 (12.6)	41.7	22.9 (14.7)	2.2 (0.6)	72.2 (8.2)	NR	666.4 (216.2) ^b
	Randomized therapy was added to prestudy stable maintenance ICS dose ^a	Tiotropium 2.5µg daily (Respimat) n=262	43.7 (13.1)	40.5	22.2 (14.1)	2.2 (0.7)	73.1 (8.6)	NR	649.8 (196.2) ^b

Study, Year, n, Acronym, Study design, Duration Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (µg/d) [mean (SD)]
		Placebo n=269	42.5 (13.1)	38.3	20.2 (13.4)	2.3 (0.7)	73.0 (8.2)	NR	661.5 (209.5) ^b
Kerstjens, 2015 ¹¹⁹ Study 2 MezzoTinA-asthma 2 n=764 RCT, 24w Low	18-75 year of age with moderate persistent asthma according to GINA guidelines despite treatment with stable medium dose ICS (400-800µg/d budesonide or equivalent) alone or in fixed combination with LABA, symptomatic with ACQ-7 ≥1.5	Tiotropium 5μg daily (Respimat) n=253	44.3 (12.7)	42.3	23.1 (15.3)	2.3 (0.6)	72.2 (8.3)	NR	661.3 (216.1) ^b
	Randomized therapy was added to prestudy stable maintenance ICS dose ^c	Tiotropium 2.5μg daily (Respimat) n=257	43.0 (12.6)	37.7	21.9 (14.5)	2.3 (0.7)	72.5 (8.0)	NR	662.1 (229.5) ^b
		Placebo n=254	43.0 (13.0)	42.9	22.0 (13.9)	2.3 (0.7)	73.0 (8.4)	NR	675.6 (225.4) ^b
Lee, 2015 ¹²⁰ n=362 RCT- crossover, 15d Unclear	18 years of age and older with symptomatic asthma despite ICS treatment, alone or in combination with LABA or leukotriene modifier	Umeclidinium/fluticasone 15.6/100μg daily (DPI) n=62 Umeclidinium/fluticasone 31.25/100μg daily (DPI) n=60 Umeclidinium/fluticasone 62.5/100μg daily (DPI) n=63 Umeclidinium/fluticasone 125/100μg daily (DPI) n=58 Umeclidinium/fluticasone 250/100μg daily (DPI) n=55	47.5 (13.8)	31	<1y=2% 1-4y=13% 5-9y=17% ≥10=69%	1.85 (0.53)	62.3 (10.3)	NR	NR

Study, Year, n, Acronym, Study design, Duration Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (µg/d) [mean (SD)]
		Fluticasone 100µg daily (DPI) n=64							
Ohta, 2015 ¹²¹ n=285 RCT, 52w Low	18-75 years of age with moderate-severe asthma according to GINA guidelines despite receiving stable mediumdose ICS (400-800μg/d of budesonide or equivalent) alone or fixed combination with LABA, symptomatic with ACQ-7 ≥1.5	Tiotropium 2.5μg daily (Respimat) n=114	44.7 (12.1)	36.8	21.0 (0.8 to 57.8) ^e	NR	NR	NR	673.2 (247.4) ^{b,f}
	Randomized therapy was added to continued background ICS dose with or without LABAd	Tiotropium 5μg daily (Respimat) n=114	42.6 (12.8)	42.1	21.0 (0.3 to 54.0) ^e	NR	NR	NR	658.9 (220.5) ^{b,f}
		Placebo N=57	47.8 (13.0)	33.3	26.8 (0.8 to 63.0) ^e	NR	NR	NR	644.2 (220.9) ^{b,f}
Hammelmann, 2016 ¹²³ RubaTinA-asthma n=397 RCT, 48w Low	12-17 years of age with moderate symptomatic asthma with an ACQ ≥1.5 receiving maintenance therapy with ICS with or without LABA or LTRA	Tiotropium 5μg daily (Respimat) n=134	14.5 (1.6)	66.4	8.2 (4.2)	2.6 (0.6)	77.3 (8.6)	NR	536 (256) ^{b,f}
	Randomized therapy was added on to maintenance ICS dose with or without LTRA ^g	Tiotropium 2.5μg daily (Respimat) n=125	14.2 (1.8)	64.8	7.7 (4.0)	2.5 (0.6)	78.1 (7.9)	NR	557 (346) ^{b,f}
		Placebo n=138	14.2 (1.7)	63.8	7.7 (4.2)	2.6 (0.6)	77.6 (7.5)	NR	527 (275) ^{b,f}

Study, Year, n, Acronym, Study design, Duration Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (µg/d) [mean (SD)]
Paggiaro, 2016 ¹²² GraziaTinA-asthma n=464 RCT, 12w Low	18-75 years of age with mild symptomatic asthma with an ACQ ≥1.5 despite receiving maintenance therapy with low-moderate ICS (200-400μg/d budesonide or equivalent) that is GINA step 2	Tiotropium 5μg daily (Respimat) n=155	41.9 (13.0)	38.1	15.2 (10.2)	2.3 (0.6)	74.9 (8.1)	NR	376.9 (59.7) ^{b,f}
	Randomized therapy was added on to continued low-medium ICS dose	Tiotropium 2.5μg daily (Respimat) n=154	43.8 (14.0)	46.8	17.1 (13.0)	2.3 (0.7)	73.2 (8.6)	NR	384.4 (93.4) ^{b,f}
		Placebo n=155	42.8 (12.1)	33.5	16.2 (12.3)	2.2 (0.6)	73.7 (8.5)	NR	383.0 (77.1) ^{b,f}

ACQ=Asthma Control Questionnaire; BID=twice daily; d=day(s); DPI=dry powder inhaler; FEV1=forced expiratory volume in one second; GINA=Global Initiative for Asthma; ICS=inhaled corticosteroid; L=liter; LABA=long-acting β-agonist; LTRA=leukotriene receptor antagonist; MDI=metered dose inhaler; n=patient sample size; NR=not reported; RCT=randomized controlled trial; SD=standard deviation; w=weeks; y=years

 $^{^{}a}$ Concurrent therapy during the study with leukotriene modifiers was 11.7% in the tiotropium 5 μ g daily arm, 8.8% in the tiotropium 2.5 μ g daily arm, 10.9% in the salmeterol 50 μ g BID arm and 10.8% in the placebo arm

^bData at baseline, randomized treatments were add-on to continued use of ICS

 $^{^{\}circ}$ Concurrent therapy during the study with leukotriene modifiers was 7.1% in the tiotropium 5 μ g daily arm, 9.7% in the tiotropium 2.5 μ g daily arm, 8.3% in the salmeterol 50 μ g BID arm and 7.5% in the placebo arm

^dConcurrent therapies during the study in the tiotropium 2.5µg daily arm included LABAs (54.4%), leukotriene modifiers (31.6%) and methylxanthines (22.8%). Concurrent therapies during the study in the tiotropium 5µg daily arm included LABAs (57.0%), leukotriene modifiers (25.4%) and methylxanthines (16.7%). Concurrent therapies during the study in the placebo arm included LABAs (61.4%), leukotriene modifiers (24.6%) and methylxanthines (17.5%).

^eData reported as median (range)

^fBudesonide equipotent dose in μg

^gConcurrent therapy during the study with leukotriene modifiers was 11.2% in the tiotropium 5 µg daily arm, 6.4% in the tiotropium 2.5 µg daily arm and 10.1% in the placebo arm

Table C-22. Study level outcomes for KQ2a

Study, Year, n, Study design, Duration	Population ^a	Exacerbations	Mortality	Asthma control	Quality of life	Healthcare utilization
Peters, 2010 ²⁷ n=210 RCT- crossover, 14w	Age: 12y+ Severity/control: Moderately severe/ not well controlled ^b ICS daily dose: Low vs. medium	Systemic corticosteroids: RR 0.48 (0.12 to 1.84) Oral corticosteroids or increase in ICS or other asthma medications: RR 0.32 (0.09 to 1.13)	NR	Composite measures: ACQ-6: MD -0.15 (-0.45 to 0.15) Spirometry:: FEV1 trough: MD 0.09 (-0.20 to 0.38)	AQLQ: MD 0.04 (-0.32 to 0.40)	NR
Bateman, 2011 ¹¹⁸ n=388 RCT, 16w	Age: 12y+ Severity/control: Moderate persistent/ not controlled ^c ICS daily dose: Low to medium	Systemic corticosteroids: RR 0.93 (0.49 to 1.75)	NR	Composite measures: NR Spirometry:: FEV1 trough: MD 0.15 (0.07 to 0.23) FVC trough: MD 0.14 (0.04 to 0.23)	AQLQ-mini: MD -0.091 (- 0.265 to 0.082)	Rescue medication use: MD -0.37 (-0.90 to 0.16)
Kerstjens, 2015 ¹¹⁹ Study 1 n=1071 RCT, 24w	Age: 12y+ Severity/control: Moderate persistent/ uncontrolled ^d ICS daily dose: Low to medium	Systemic corticosteroids: RR 0.62 (0.42 to 0.92) ^e Asthma worsening: RR 0.79 (0.67 to 0.94) ^e	All-cause: No deaths occurred	Composite measures: ACQ-7 score: MD -0.21 (-0.30 to -0.12) ACQ-7 responder: RR 1.21 (1.07 to 1.38) Spirometry:: FEV1 peak: MD 0.22 (0.17 to 0.27) FEV1 trough: MD 0.17 (0.11 to 0.22) FEV1 AUC: MD 0.21 (0.16 to 0.26) FVC peak: MD 0.14 (0.09 to 0.19) FVC trough: MD 0.10 (0.04 to 0.16) FVC AUC: MD 0.13 (0.08 to 0.19)	AQLQ: MD 0.07 (-0.06 to 0.2)	Rescue medication use: MD -0.01 (-0.26 to 0.23)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations	Mortality	Asthma control	Quality of life	Healthcare utilization
Kerstjens, 2015 ¹¹⁹ Study 2 n=1032 RCT, 24w	Age: 12y+ Severity/control: Moderate persistent/ uncontrolledd ICS daily dose: Low to medium	Systemic corticosteroids: RR 0.62 (0.42 to 0.92) ^e Asthma worsening: RR 0.79 (0.67 to 0.94) ^e	All-cause: No deaths occurred	Composite measures: ACQ-7 score: MD -0.07 (-0.16 to 0.02) ACQ-7 responder: RR 1.03 (0.92 to 1.15) Spirometry:: FEV1 peak: MD 0.19 (0.15 to 0.24) FEV1 trough: MD 0.16 (0.10 to 0.21) FEV1 AUC: MD 0.18 (0.14 to 0.23) FVC peak: MD 0.10 (0.05 to 0.15) FVC trough: MD 0.08 (0.02 to 0.15) FVC AUC: MD 0.10 (0.04 to 0.16)	AQLQ: MD 0.11 (-0.03 to 0.25)	Rescue medication use: MD -0.03 (-0.25 to 0.19)
Lee, 2015 ¹²⁰ n=421 RCT- crossover, 15d	Age: 12y+ Severity/control: Not reported/ uncontrolled ^f ICS daily dose: Low	Systemic corticosteroids: RR 0.64 (0.07 to 6.09)	All-cause: No deaths occurred	Composite measures: NR Spirometry:: FEV1 trough: MD 0.11 (0.01 TO 0.21)	NR	Rescue medication use: MD -0.29 (-0.69 to 0.10)
Ohta, 2015 ¹²¹ n=285 RCT, 52w	Age: 12y+ Severity/control: Moderate-severe/ uncontrolledd ICS daily dose: Low to medium	NR	All-cause: No deaths occurred	Composite measures: ACQ-7 responder: RR 0.98 (0.83 to 1.16) Spirometry:: FEV1 trough: MD 0.06 (-0.02 to 0.15) FVC trough: MD 0.02 (-0.07 to 0.12)	NR	Rescue medication use: MD -0.01 (-0.26 to 0.25)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations	Mortality	Asthma control	Quality of life	Healthcare utilization
Hammel- mann, 2016 ¹²³ n=398 RCT, 48w	Age: 12y+ Severity/control: Moderate/ uncontrolledd ICS daily dose: Low to medium	Systemic corticosteroids: RR 0.41 (0.16 to 1.09) Asthma worsening: RR 0.92 (0.65 to 1.31)	All-cause: No deaths occurred	Composite measures: ACQ-7: MD -0.17 (-0.30 to -0.04) ACQ-7 responder: RR 1.16 (1.02 to 1.31) Spirometry:: FEV1 peak: MD 0.16 (0.06 to 0.25) FEV1 trough: MD 0.10 (0.00 to 0.20) FEV1 AUC: MD 0.16 (0.07 to 0.24) FVC peak: MD 0.08 (-0.02 to 0.18) FVC trough: MD 0.05 (-0.06 to 0.16) FVC AUC: MD 0.08 (-0.02 to 0.18)	AQLQ(S) 12+ responder: RR 1.12 (0.92 to 1.37)	Rescue medication use: MD -0.29 (-0.53 to -0.05)
Paggiaro, 2016 ¹²² n=465 RCT, 12w	Age: 12y+ Severity/control: Mild/uncontrolledd ICS daily dose: Low	Systemic corticosteroid: RR 0.88 (0.26 to 2.95) Asthma worsening: RR 0.78 (0.47 to 1.28)	All-cause: No deaths occurred	Composite measures: ACQ-7: MD 0.03 (-0.07 to 0.14) ACQ-7 responder: RR 1.00 (0.86 to 1.18) Spirometry:: FEV1 peak: MD 0.14 (0.08 to 0.21) FEV1 trough: MD 0.12 (0.05 to 0.18) FEV1 AUC: MD 0.14 (0.08 to 0.20) FEV1 % predicted: MD 3.5 (1.58 to 5.42)	NR	Rescue medication use: MD 0.09 (-0.13 to 0.32)

Abbreviations: ACQ=Asthma Control Questionnaire; AQLQ=Asthma Quality of Life Questionnaire; AUC=area under the curve; d=days; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; EPR-3=Expert Panel Review-3 (guidelines for the diagnosis and management of asthma); ICS=inhaled corticosteroid; MD=mean difference; n=patient sample size; NR=not reported; RCT=randomized controlled trial; RR=relative risk; w=weeks

^aAge is categorized using study inclusion criteria and the age categories used in EPR-3 of 0-4y, 5-11y and 12y+. Severity is as reported per the study. Control was not always explicitly stated thus study criteria were applied to EPR-3 categories of control to determine asthma control status. ICS daily dose is categorized using the study's required ICS dose and the EPR-3 categories of low, medium and high

^bDefined as reported in the study, FEV1% predicted 70% or less or during final 2 week run-in symptoms 6 or more days per week or rescue inhaler used 6 or more days per week or were awakened by symptoms of asthma 2 nights or more per week.

Table C-23. Subgroup analysis by tiotropium dose for KQ2a

	Tiotropium vs. placebo RR or MD (95% CI) (base case analysis)	Tiotropium 2.5µg vs. placebo RR or MD (95% CI)	Tiotropium 5µg vs. placebo RR or MD (95% CI)	Tiotropium 2.5µg vs. 5µg RR or MD (95% CI)
Exacerbation requiring systemic corticosteroid	RR 0.67 (0.48 to 0.92)	RR 0.63 (0.20 to 2.04)	RR 0.69 (0.32 to 1.47)	RR 1.70 (0.11 to 25.55)
Asthma worsening	RR 0.81 (0.68 to 0.97)	RR 0.82 (0.49 to 1.38)	RR 0.85 (0.63 to 1.15)	RR 1.08 (0.45 to 2.57)
ACQ-7 score	MD -0.10 (-0.28 to 0.07)	MD -0.12 (-0.35 to 0.11)	MD -0.09 (-0.23 to 0.06)	MD -0.03 (-0.16 to 0.10)
ACQ-7 responder	RR 1.08 (0.96 to 1.21)	RR 1.08 (0.98 to 1.20)	RR 1.08 (0.95 to 1.24)	RR 0.99 (0.92 to 1.07)
FEV1 peak	MD 0.18 (0.13 to 0.24)	MD 0.20 (0.13 to 0.27)	MD 0.17 (0.13 to 0.21)	MD 0.03 (-0.01 to 0.07)
FEV1 trough	MD 0.13 (0.10 to 0.17)	MD 0.12 (0.03 to 0.21)	MD 0.13 (0.12 to 0.15)	MD -0.01 (-0.08 to 0.06)
FEV1 AUC	MD 0.18 (0.13 to 0.23)	MD 0.19 (0.12 to 0.25)	MD 0.17 (0.12 to 0.21)	MD 0.02 (-0.02 to 0.07)
FVC peak	MD 0.11 (0.05 to 0.18)	MD 0.13 (0.03 to 0.24)	MD 0.09 (0.06 to 0.12)	MD 0.04 (-0.04 to 0.12)
FVC trough	MD 0.08 (0.04 to 0.13)	MD 0.07 (-0.04 to 0.18)	MD 0.08 (0.05 to 0.12)	MD -0.01 (-0.13 to 0.11)
FVC AUC	MD 0.11 (0.05 to 0.17)	MD 0.13 (0.04 to 0.21)	MD 0.09 (0.05 to 0.13)	MD 0.03 (-0.02 to 0.08)
Rescue medication use, puffs/24 hours	MD -0.08 (-0.23 to 0.07)	MD -0.09 (-0.34 to 0.16)	MD -0.03 (-0.22 to 0.16)	MD -0.08 (-0.37 to 0.20)

Abbreviations: ACQ=Asthma Control Questionnaire; AUC=area under curve; CI=confidence interval; FVC=forced vital capacity; FEV1=forced expiratory volume in one second; MD=mean difference; RR=relative risk

^cDefined as reported in the study, symptoms not well controlled on ICS alone

dRequired ACQ≥1.5 for enrollment

^eOutcome was not reported for study 1 and 2 separately, value reflects data from study 1 and 2 combined

^fPatients were required to be symptomatic on ICS with FEV1% predicted 40-80% after run-in

Table C-24. Study and population characteristics for KQ2b

Study, Year,	and population characte Study population	Intervention	Age	Males	Duration	FEV ₁	FEV₁ %	Rescue	ICS dose
n,	otady population	Comparisons	(y)	(%)	of	(L)	predicted	inhaler	during
Acronym,			[mean		asthma	[mean	(L)	use	study
Study design, Duration,			(SD)]		(yr) [mean (SD)]	(SD)]	[mean (SD)]	(puffs/d) [mean	(μg/d) [mean
Risk of bias					(00)]		(30)]	(SD)]	(SD)]
Peters, 2010 ²⁷ TALC n=210 RCT- crossover, 14w	≥18 years of age with moderately severe asthma not well controlled on ICS alone	Tiotropium 18µg daily (Handihaler) n=210	42.2 (12.3)	32.9	26.1 (14.1)	2.31 (0.77)	71.5 (14.9)	1.71 (2.09)	NR NR
Low	Tiotropium or salmeterol were added on to run-in dose of beclomethasone 80µg BID	Salmeterol 50μg BID (DPI) n=210							NR
Bateman, 2011 ¹¹⁸ n=262 RCT, 16w Low	18-65 years of age with moderate persistent asthma (GINA step 3) not controlled on ICS alone (400-1000µg/d	Tiotropium 5μg daily (Respimat) n=128	43.5 (12.6)	35.9	18.1 (12.1)	2.3 (0.77)	74.1 (16.1)	NR	NR
LOW	budesonide or equivalent) Randomized therapy added on to ICS continued at prestudy	Salmeterol 50μg BID (MDI) n=134	42.3 (13.4)	38.1	15.4 (10.7)	2.4 (0.8)	75.6 (17.6)	NR	NR
Rajanandh, 2014 ¹⁴⁶ n=123 RCT, 90d	dose 18-60 years of age with uncontrolled, mild to moderate persistent asthma according to the GINA guidelines ^a	Tiotropium 18μg daily (HandiHaler) + budesonide 400μg daily n=31	40.4 (13.6)	64.5	5.4 (2.7)	NR	66.9 (1.7)	NR	NR
High	, and the second	Formoterol 6µg BID + budesonide 400µg daily n=32	37.2 (14.9)	56.3	5.6 (2.7)	NR	66.6 (2.0)	NR	NR
		Doxofylline 400mg daily + budesonide 400µg daily n=30	37.1 (18.8)	36.7	5.2 (2.7)	NR	66.8 (1.5)	NR	NR

Study, Year, n, Acronym, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (yr) [mean (SD)]	FEV ₁ (L) [mean (SD)]	FEV ₁ % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (μg/d) [mean (SD)]
		Montelukast 10mg daily + budesonide 400μg daily n=30	39.3 (17.0)	40.0	5.6 (3.0)	NR	67.2 (1.4)	NR	NR
Kerstjens, 2015 ¹¹⁹ Study 1 MezzoTinA-asthma 1 n=801 RCT, 24w Low	18-75 year of age with moderate persistent asthma according to GINA guidelines despite treatment with stable medium dose ICS (400-800µg/d budesonide or equivalent) alone or in fixed combination with LABA, symptomatic with ACQ-7 ≥1.5.	Tiotropium 5μg daily (Respimat) n=264	44.4 (12.6)	41.7	22.9 (14.7)	2.2 (0.6)	72.2 (8.2)	NR	666.4 (216.2) ^c
	Randomized therapy was added to prestudy stable maintenance ICS doseb	Tiotropium 2.5μg daily (Respimat) n=262	43.7 (13.1)	40.5	22.2 (14.1)	2.2 (0.7)	73.1 (8.6)	NR	649.8 (196.2) ^c
		Salmeterol 50μg BID (MDI) n=275	42.6 (12.6)	42.2	21.4 (14.5)	2.3 (0.6)	72.8 (8.5)	NR	656.7 (193.1) ^c
Kerstjens, 2015 ¹¹⁹ Study 2 MezzoTinA-asthma 2 n=776 RCT, 24w Low	18-75 year of age with moderate persistent asthma according to GINA guidelines despite treatment with stable medium dose ICS (400-800μg/d budesonide or equivalent) alone or in fixed combination with LABA, symptomatic with ACQ-7 ≥1.5	Tiotropium 5μg daily (Respimat) n=253	44.3 (12.7)	42.3	23.1 (15.3)	2.3 (0.6)	72.2 (8.3)	NR	661.3 (216.1)°
	Randomized therapy was added to prestudy stable maintenance ICS dosed	Tiotropium 2.5μg daily (Respimat) n=257	43.0 (12.6)	37.7	21.9 (14.5)	2.3 (0.7)	72.5 (8.0)	NR	662.1 (229.5)°
		Salmeterol 50µg BID (MDI) n=266	41.5 (13.1)	42.5	20.4 (14.1)	2.4 (0.7)	73.1 (8.1)	NR	644.7 (217.2) ^c

Study, Year, n, Acronym, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (yr) [mean (SD)]	FEV ₁ (L) [mean (SD)]	FEV ₁ % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (μg/d) [mean (SD)]
Lee, 2015 ¹²⁰ n=357 RCT- crossover, 15d	18 years of age and older with symptomatic asthma despite ICS treatment, alone or in combination with LABA or leukotriene modifier	Umeclidinium/fluticasone 15.6/100μg daily (DPI) n=62	47.5 (13.8)	31	<1y=2% 1-4y=13% 5-9y=17% ≥10=69%	1.85 (0.53)	62.3 (10.3)	NR	NR
Unclear		Umeclidinium/fluticasone 31.25/100μg daily (DPI) n=60 Umeclidinium/fluticasone 62.5/100μg daily (DPI) n=63							
		Umeclidinium/fluticasone 125/100μg daily (DPI) n=58 Umeclidinium/fluticasone 250/100μg daily (DPI)	-						
		n=55 Vilanterol/fluticasone 125/100μg daily (DPI) n=59	_						
Rajanandh, 2015 ¹⁴⁷ n=297 RCT, 180d	18-60 years of age with uncontrolled, mild-moderate persistent asthma according to GINA guidelines ^a	Tiotropium 18μg daily (Handihaler) + budesonide 400μg daily n=72	37.4 (13.6)	52.8	5.8 (8.7)	NR	66.1 (6.4)	4.4 (1.1)	NR
Medium		Formoterol 6μg BID + budesonide 400μg daily n=68	38.4 (14.9)	55.4	6.6 (6.7)	NR	66.2 (8.3)	4.4 (1.1)	NR
		Montelukast 10mg daily + budesonide 400μg daily n=81	36.3 (17.0)	44.4	5.9 (8.0)	NR	67.2 (6.5)	4.5 (1.2)	NR
		Doxofylline 400mg daily + budesonide 400µg daily n=76	38.3 (18.8)	53.9	6.2 (9.7)	NR	66.3 (7.0)	4.5 (1.1)	NR

Study, Year, n, Acronym, Study design, Duration, Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (yr) [mean (SD)]	FEV ₁ (L) [mean (SD)]	FEV ₁ % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (µg/d) [mean (SD)]
Wechsler, 2015 ¹⁴⁸ BELT n=1070 RCT, 18m Low	18-75 years of age with asthma currently on or eligible for step 3 or 4 combination ICS/LABA according to the NHLBI guidelines	Tiotropium 18μg daily (HandiHaler) n=532	45.2 (12.6)	23.9	23.3 (15.8)	2.1 (0.7)	78.6 (17.6)	3.4 (3.5)	NR ^f
	Randomized therapy was added to continued baseline ICS dose	LABA BID ^e n=538	45.1 (12.6)	24.2	25.6 (16.0)	2.1 (0.6)	78.7 (18.6)	3.5 (3.7)	NR ^f

Abbreviations: ACQ=Asthma Control Questionnaire; BID=twice daily; d=day; DPI=dry powder inhaler; FEV1=forced expiratory volume in one second; GINA=Global Initiative for Asthma; ICS=inhaled corticosteroid; L=liter; LABA=long-acting β_2 -agonist; =months; MDI=metered dose inhaler; n=patient sample size; NHLBI=National Heart, Lung, and Blood Institute; NR=not reported; RCT=randomized controlled trial; SD=standard deviation; μ_g =microgram; w=week; y=year

^aConfirmed through author correspondence

^bConcurrent therapy during the study with leukotriene modifiers was 11.7% in the tiotropium 5μg daily arm, 8.8% in the tiotropium 2.5μg daily arm, 10.9% in the salmeterol 50μg BID arm and 10.8% in the placebo arm

^cData at baseline, randomized treatments were add-on to continued use of ICS

^dConcurrent therapy during the study with leukotriene modifiers was 7.1% in the tiotropium 5μg daily arm, 9.7% in the tiotropium 2.5μg daily arm, 8.3% in the salmeterol 50μg BID arm and 7.5% in the placebo arm

eEither salmeterol 50μg or formoterol 9μg BID, based on baseline usage of LABA. 116/538 (21.6%) for formoterol & 422/538 (78.4%) for salmeterol

^fMean/median ICS dose was not reported, although patients continued baseline ICS dose. Of those taking an ICS without LABA at baseline (28%), 88% were taking low-dose ICS <500μg. Of those taking ICS+LABA, 70% were using a single inhaler to delivery both medications. Approximately half were taking fluticasone/salmeterol 250/50μg

Table C-25 Study level outcomes for KO2b

Study, Year, n, Study design,	Population ^a	Exacerbations	Mortality	Asthma control	Quality of life	Healthcare utilization
Peters, 2010 ²⁷ n=210 RCT- crossover, 14w	Age: 12y+ Severity/control: Moderately severe/ not well controlled ^b ICS daily dose: Low vs. medium	Systemic corticosteroid: RR 0.60 (0.15 to 2.42) Oral corticosteroid or increase in ICS or other asthma medication: RR 0.60 (0.15 to 2.42)	NR	Composite measures: ACQ-6: MD 0.30 (0.00 to 0.60) Spirometry:: FEV1 trough: MD 0.12 (-0.15 to 0.39)	AQLQ: MD -0.22 (-0.60 to 0.16)	NR
Bateman, 2011 ¹¹⁸ n=388 RCT, 16w	Age: 12y+ Severity/control: Moderate persistent/ not controlled ^c ICS daily dose: Low to medium	Systemic corticosteroid: RR 0.99 (0.52 to 1.87)	NR	Composite measures: NR Spirometry:: FEV1 trough: MD -0.02 (-0.10 to 0.06) FVC trough: MD 0.01 (-0.08 to 0.11)	AQLQ-mini: MD -0.149 (-0.320 to 0.222)	Rescue medication use: MD 0.20 (-0.32 to 0.72)
Rajanandh, 2014 ¹⁴⁶ n=167 RCT, 90d	Age: 12y+ Severity/control: Mild to moderate persistent/ uncontrolledd ICS daily dose: Low to medium	NR	NR	Composite measures: NR Spirometry:: FEV1 % predicted: LAMA vs. LABA: MD -7.34 (-8.30 to -6.38) LAMA vs. montelukast: MD -2.14 (-2.93 to -1.35) LAMA vs. doxofylline: MD -3.87 (-4.6 to -3.14)	NR	Rescue medication use: LAMA vs. LABA: MD 1.38 (0.89 to 1.87) LAMA vs. montelukast: MD 0.26 (-0.25 to 0.77) LAMA vs. doxofylline: MD 1.21 (0.89 to 1.53)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations	Mortality	Asthma control	Quality of life	Healthcare utilization
Kerstjens, 2015 ¹¹⁹ Study 1 n=1071 RCT, 24w	Age: 12y+ Severity/control: Moderate persistent/ uncontrollede ICS daily dose: Low to medium	Systemic corticosteroid: RR 0.81 (0.54 to 1.24) ^f Asthma worsening: RR 1 (0.84 to 1.12) ^f	All-cause: No deaths occurred	Composite measures: ACQ-7 score: MD 0.04 (-0.05 to 0.13) ACQ-7 responder: RR 1.06 (0.96 to 1.18) Spirometry:: FEV1 peak: MD 0.004 (-0.05 to 0.05) FEV1 trough: MD 0.05 (-0.01 to 0.10) FEV1 AUC: MD -0.004 (-0.05 to 0.04) FVC peak: MD 0.016 (-0.04 to 0.07) FVC trough: MD 0.03 (-0.03 to 0.10) FVC AUC: MD 0.005 (-0.05 to 0.06)	AQLQ: MD -0.07 (-0.20 to 0.06)	Rescue medication use: MD 0.44 (0.20 to 0.68)
Kerstjens, 2015 ¹¹⁹ Study 2 n=1032 RCT, 24w	Age: 12y+ Severity/control: Moderate persistent/ uncontrollede ICS daily dose: Low to medium	Systemic corticosteroid: RR 0.81 (0.54 to 1.24) ^f Asthma worsening: RR 1.00 (0.84 to 1.12) ^f	All-cause: No deaths occurred	Composite measures: ACQ-7 score: MD 0 (-0.09 to 0.09) ACQ-7 responder: RR 1.00 (0.90 to 1.12) Spirometry:: FEV1 peak: MD 0.014 (-0.03 to 0.06) FEV1 trough: MD 0.05 (0.00 to 0.10) FEV1 AUC: MD 0.004 (-0.04 to 0.05) FVC peak: MD -0.017 (-0.07 to 0.03) FVC trough: MD 0.02 (-0.05 to 0.08) FVC AUC: MD -0.032 (-0.09 to 0.03)	AQLQ: MD -0.05 (0.18 to 0.08)	Rescue medication use: MD 0.09 (-0.13 to 0.31)

Study, Year, n, Study design, Duration	Population ^a	Exacerbations	Mortality	Asthma control	Quality of life	Healthcare utilization
Lee, 2015 ¹²⁰ n=421 RCT- crossover, 15d	Age: 12y+ Severity/control: Not reported/ uncontrolled ^g ICS daily dose: Low	Systemic corticosteroid: RR 6.93 (0.36 to 133.57)	All-cause: No deaths occurred	Composite measures: NR Spirometry: FEV1 trough: MD -0.05 (-0.15 to 0.06)	NR	Rescue medication use: MD 0.14 (-0.25 to 0.53)
Rajanandh, 2015 ¹⁴⁷ n=362 RCT, 180d	Age:12y+ Severity/control: Mild to moderate persistent/ uncontrolledd ICS daily dose: Low to medium	Requiring hospitalization: No events occurred	NR	Composite measures: NR Spirometry: FEV1 % predicted: LAMA vs. LABA: MD -4.46 (-6.71 to -2.21) LAMA vs. montelukast: MD -0.87 (-2.77 to -1.03) LAMA vs. doxofylline: MD -2.69 (-4.79 to -0.59)	NR	Rescue medication use: LAMA vs LABA: MD 2.03 (1.72 to 2.34) LAMA vs. monteluklast: 1.19 (0.88 to 1.5) LAMA vs. doxofylline: MD 1.21 (0.89 to 1.53)
Wechsler, 2015 ¹⁴⁸ n=1070 RCT, 18m	Age: 12y+ Severity/control: Step 3 or 4 according to NHLBI guidelines/ uncontrolledh ICS daily dose: Low to high	Systemic corticosteroid or hospitalization: RR 1.09 (0.87 to 1.36) Requiring hospitalization: RR 0.52 (0.24 to 1.11)	All-cause: 0.6% vs. 0%, p=0.12 Asthma-specific: 0.4% vs. 0%, p=0.25	Composite measures: ACQ-7: MD 0.04 (-0.18 to 0.27) Spirometry:: FEV1 trough: MD -0.02 (-0.09 to 0.04) FEV1 % predicted: MD -0.63 (-4.41 to 3.15)	AQLQ: MD 0.05 (-0.23, 0.33)	Rescue medication use: MD -0.05 (-0.71 to 0.61)

Abbreviations: ACQ=Asthma Control Questionnaire; AQLQ=Asthma Quality of Life Questionnaire; AUC=area under the curve; d=day; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; EPR=Expert Panel Review (Guidelines for the Diagnosis and Management of Asthma); ICS=inhaled corticosteroid; LABA=long-acting beta-agonist; LAMA=long-acting muscarinic antagonist; m=month; MD=mean difference; n=patient sample size; NHLBI=National Heart, Lung and Blood Institute; NR=not reported; RCT=randomized controlled trial; RR=relative risk; w=week

^aAge is categorized using study inclusion criteria and the age categories used in EPR-3 of 0-4y, 5-11y and 12y+. Severity is as reported per the study. Control was not always explicitly stated thus study criteria were applied to EPR-3 categories of control to determine asthma control status. ICS daily dose is categorized using the study's required ICS dose and the EPR-3 categories of low, medium and high

^bAs reported in the study, FEV1 % predicted 70% or less or during final 2 week run-in symptoms 6 or more days per week or rescue inhaler used 6 or more days per week or were awakened by symptoms of asthma 2 nights or more per week.

^cAs reported in the study, symptoms not well controlled on ICS alone

^dConfirmed through email correspondence with author although further details were not provided

eRequired ACQ≥1.5 for enrollment

Outcome was not reported for study 1 and 2 separately, value reflects data from study 1 and 2 combined

^gPatients were required to be symptomatic on ICS with FEV1 % predicted 40-80% after run-in

^hNot explicitly defined by the study. Expert consensus arrived at "uncontrolled" given baseline ACQ, rescue medication use and FEV1 <80%

Table C-26. Study and population characteristics for KQ2c

	y and population characteristic								
Study, Year, n, Acronym, Study design, Duration Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (μg/d) [mean (SD)]
Kerstjens, 2012 ¹⁴¹ Study 1 PrimoTinA- asthma 1 n=459 RCT, 48w	18-75 years of age with severe persistent, symptomatic asthma & ACQ-7 ≥1.5 despite daily ICS (≥800μg budesonide or equivalent per day) and LABA therapy	Tiotropium 5μg daily (Respimat) n=237	52.9 (12.4)	38.4	31 (6 to 70) ^b	1.60 (0.55)	54.6 (12.2)	2.8 (NR)	800 (800- 1600) ^{c,d,e}
Low	Randomized therapy added on to pretrial maintenance high-dose ICS and LABA. Other maintenance medications allowed to continue at stable doses ^a	Placebo n=222	53.9 (12.8)	35.6	28 (6 to 68) ^b	1.56 (0.54)	54.6 (12.2)	3.3 (NR)	
Kerstjens, 2012 ¹⁴¹ Study 2 PrimoTinA- asthma 2 n=453 RCT, 48w	18-75 years of age with severe persistent, symptomatic asthma & ACQ-7 ≥1.5 despite daily ICS (≥800µg budesonide or equivalent per day) and LABA therapy	Tiotropium 5μg daily (Respimat) n=219	51.4 (12.5)	42.0	26 (5 to 72) ^b	1.66 (0.57)	55.1 (12.8)	3.4 (NR)	800 (800- 1600) ^{c,d,e}
Low	Randomized therapy added on to pretrial maintenance high-dose ICS and LABA; Other maintenance medications allowed to continue at stable doses. ^f	Placebo n=234	53.6 (11.7)	42.3	28 (5 to 69) ^b	1.60 (0.51)	55.0 (12.6)	3.3 (NR)	
Wang, 2015 ¹⁵¹ n=63 RCT, 12w Unclear	Adults with moderate persistent asthma according to GINA guidelines, uncontrolled on salmeterol/ fluticasone 50/250µg BID with daily symptoms and use of SABA	Tiotropium 18μg daily (HandiHaler) n=33	36.7 (5.79) ⁹	54.5	NR	NR	NR	NR	500 ^h

Study, Year, n, Acronym, Study design, Duration Risk of bias	Study population	Intervention Comparisons	Age (y) [mean (SD)]	Males (%)	Duration of asthma (y) [mean (SD)]	FEV1 (L) [mean (SD)]	FEV1 % predicted (L) [mean (SD)]	Rescue inhaler use (puffs/d) [mean (SD)]	ICS dose during study (μg/d) [mean (SD)]
	Tiotropium was added on to continued salmeterol/fluticasone 50/250µg BID	Increase salmeterol /fluticasone to 50/500µg BID (DPI) n=30	35.3 (5.89) ⁹	53.3	NR	NR	NR	NR	1000 ^h
Hamelmann, 2016 ¹⁵² PensieTinA- asthma n=392 RCT, 12w Low	12-17 years of age with severe persistent asthma according to GINA guidelines despite highdose ICS (>400μg/d in 12-14y, >800-1600μg/d of budesonide equivalent if >14y) with another controller OR medium dose ICS (200-400μg/d budesonide equivalent in 12-14y, 400-800μg/d in >14y) with two other controllers; Symptomatic with ACQ-7 ≥1.5.	Tiotropium 5μg daily (Respimat) n=130	14.3 (1.6)	63.8	7.3 (4.0)	2.6 (0.7)	79.4 (12.3)	NR	776.7 (381.2) ^{d,e}
	Randomized therapies were added on to ICS and other controllers used prior to the study ⁱ	Tiotropium 2.5μg daily (Respimat) n=127	14.4 (1.8)	63.0	8.0 (3.9)	2.5 (0.6)	79.8 (9.9)	NR	727.8 (343.6) ^{d,e}
		Placebo n=135	14.1 (1.7)	58.5	8.0 (3.7)	2.5 (0.6)	79.4 (12.2)	NR	736.6 (347.9) ^{d,e}

Abbreviations: ACQ=Asthma Control Questionnaire; BID=twice daily; d=day; DPI=dry powder inhaler; FEV1=forced expiratory volume in one second; GINA=Global Initiative for Asthma; ICS=inhaled corticosteroid; L=liter; LABA=long-acting β2-agonist; LAMA=long-acting muscarinic antagonist; n=patient sample size; NR=not reported; RCT=randomized controlled trial; SABA=short-acting β-agonist; SD=standard deviation; μg=microgram; w=week; y=year

^aConcurrent therapies during the study in the tiotropium arm included leukotriene modifiers (25.3%), theophylline (18.6%), omalizumab (2.5%), systemic steroids (6.8%) and antihistamines (20.3%). Concurrent therapies during the study in the placebo arm included leukotriene modifiers (27.5%), theophylline (21.2%), omalizumab (4.5%), systemic steroids (5.0%) and antihistamines (16.2%)

^bData reported as median (range)

^cData reported as median (interquartile range)

^dData at baseline, randomized treatments were added on to continued use of ICS

^eBudesonide equipotent dose in µg

^fConcurrent therapies during the study in the tiotropium arm included leukotriene modifiers (16.4%), theophylline (14.2%), omalizumab (2.7%), systemic steroids (3.7%) and antihistamines (14.2%). Concurrent therapies during the study in the placebo arm included leukotriene modifiers (19.7%), theophylline (12.8%), omalizumab (6.0%), systemic steroids (5.6%) and antihistamines (8.1%)

ⁱConcurrent therapies during the treatment period in the tiotropium $5\mu g$ arm were systemic corticosteroids (3%), short acting anticholinergic (0.8%), long-acting $β_2$ -agonists (82.3%), theophylline (6.2%) and leukotriene modifiers (78.5%). In this arm, 33.1% of patients were on 2 controllers while 66.9% were on three controllers. Concurrent therapies during the treatment period in the tiotropium 2.5μg arm were systemic corticosteroids (0.8%), long-acting $β_2$ -agonists (79.5%), theophylline (4.7%) and leukotriene modifiers (81.9%). In this arm, 33.9% of patients were on 2 controllers while 66.1% were on three controllers. Concurrent therapies during the treatment period in the placebo arm were systemic corticosteroids (1.5%), long-acting $β_2$ -agonists (85.9%), theophylline (5.2%) and leukotriene modifiers (80.7%). In this arm, 28.2% of patients were on 2 controllers while 71.9% were on three controllers

Table C-27. Study level outcomes for KQ2c

Study, Year, n, Study design, Duration	Population ^a	Exacerbations	Mortality	Asthma control	Quality of life	Healthcare utilization
Kerstjens, 2012 ¹⁵⁰ Study 1 n=459 RCT, 48w	Age: 12y+ Severity/control: Severe persistent/ uncontrolled ^b ICS daily dose: Medium to high	Systemic corticosteroid: RR 0.73 (0.54 to 0.99) Asthma worsening: RR 0.79 (0.67 to 0.94) Requiring hospitalization: RR 1.33 (0.54 to 3.32)	All-cause: No deaths occurred	Composite measures: ACQ-7 score: MD -0.12 (-0.27 to 0.03) ACQ-7 responder: RR 0.78 (0.68 to 0.88)° ACQ-6 responder: OR 1.49 (1.14 to 1.9)° ACQ-5 responder: OR 1.42 (1.08 to 1.86)° Spirometry:: FEV1 peak: MD 0.07 (0.00 to 0.14) FEV1 trough: MD 0.04 (-0.03 to 0.11) FEV1 AUC: MD 0.07 (0.00 to 0.14) FVC peak: MD 0.12 (0.03 to 0.22) FVC trough: MD 0.11 (0.02 to 0.20) FVC AUC: MD 0.12 (0.04 to 0.21)	AQLQ: MD 0.038 (-0.13 to 0.2) AQLQ responder: RR 1.62 (1.34 to 1.96)°	Rescue medication use: MD -0.09 (-0.47 to 0.29)

gData reported as mean (standard error)

^hICS dose assumed due to fixed dosing with add-on therapy (tiotropium arm) or increased dose (salmeterol/fluticasone arm) used in trial

Study, Year, n, Study design, Duration	Population ^a	Exacerbations	Mortality	Asthma control	Quality of life	Healthcare utilization
Kerstjens, 2012 ¹⁵⁰ Study 2 n=453 RCT, 48w	Age: 12y+ Severity /control: Severe persistent/ uncontrolled ^b ICS daily dose: Medium to high	Systemic corticosteroid: RR 0.91 (0.70 to 1.19) Asthma worsening: RR 0.79 (0.67 to 0.93) Requiring hospitalization: RR 1.16 (0.47 to 2.89)	All-cause: No deaths occurred	Composite measures: ACQ-7 score: MD -0.13 (-0.27 to 0.01) ACQ-7 responder: RR 0.78 (0.68 to 0.88) ^c ACQ-6 responder: OR 1.49 (1.14 to 1.9) ^c ACQ-5 responder: OR 1.42 (1.08 to 1.86) ^c Spirometry:: FEV1 peak: MD 0.15 (0.08 to 0.22) FEV1 trough: MD 0.09 (0.03 to 0.16) FEV1 AUC: MD 0.14 (0.07 to 0.20) FVC peak: MD 0.12 (0.02 to 0.21) FVC trough: MD 0.07 (-0.02 to 0.16) FVC AUC: MD 0.11 (0.02 to 0.20)	AQLQ: MD 0.14 (-0.03 to 0.31) AQLQ responder: RR 1.62 (1.34 to 1.96)°	Rescue medication use: MD -0.26 (-0.71 to 0.18)
Wang, 2015 ¹⁵¹ n=63 RCT, 12w	Age: 12y+ Severity/control: Moderate persistent/ uncontrolledd ICS daily dose: Medium vs. high	NR	NR	Composite measures: ACT score: MD -0.61 (-4.82 to 3.6) Spirometry:: NR	NR	NR

Study, Year, n, Study design, Duration	Population ^a	Exacerbations	Mortality	Asthma control	Quality of life	Healthcare utilization
Hamelmann, 2016 ¹⁵² n=392 RCT, 12w	Age: 12y+ Severity/control: Severe persistent/ uncontrolled ^b ICS daily dose: Medium to high	Systemic corticosteroid: RR 1.58 (0.17 to 15.00) Asthma worsening: RR 0.69 (0.43 to 1.12)	All-cause: No deaths occurred	Composite measures: ACQ-7 score: MD 0.05 (-0.11 to 0.20) ACQ-7 responder: RR 0.99 (0.88 to 1.12) ACQ-6 score: MD 0.085 (-0.08 to 0.25) ACQ-6 responder: RR 1.00 (0.88 to 1.12) Spirometry: FEV1 peak: MD 0.10 (-0.01 to 0.21) FEV1 trough: MD 0.08 (-0.03 to 0.20) FEV1 AUC: MD 0.10 (0.00 to 0.20) FVC peak: MD 0.08 (-0.04 to 0.19) FVC trough: MD 0.08 (-0.04 to 0.20) FVC AUC: MD 0.07 (-0.04 to 0.18)	NR	Rescue medication use: MD -0.03 (-0.32 to 0.26)

Abbreviations: ACQ=Asthma Control Questionnaire; ACT=Asthma Control Test; AQLQ=Asthma Quality of Life Questionnaire; AUC=area under the curve; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; EPR=Expert Panel Review (Guidelines for the Diagnosis and Management of Asthma); ICS=inhaled corticosteroid; MD=mean difference; n=patient sample size; NR=not reported; OR=odds ratio; PEF=peak expiratory flow; RCT=randomized controlled trial; RR=relative risk; SABA=short-acting β-agonist; w=weeks

^aAge is categorized using study inclusion criteria and the age categories used in EPR-3 of 0-4y, 5-11y and 12y+. Severity is as reported per the study. Control was not always explicitly stated thus study criteria were applied to EPR-3 categories of control to determine asthma control status. ICS daily dose is categorized using the study's required ICS dose and the EPR-3 categories of low, medium and high

^bRequired ACQ≥1.5 for enrollment

Outcome was not reported for study 1 and 2 separately, value reflects data from study 1 and 2 combined

^dDaily symptoms, daily SABA use, FEV1 % predicted or PEF 60-80%

Appendix D. Risk of Bias Assessment

Table D-1. Risk of bias assessment for KQ1a

Study, Year	Sequence Generation	Allocation concealment	Blinding of participants, personnel	Blinding of Outcome assessors	Incomplete outcome data	Selective outcome reporting	Other sources of bias	Overall risk of bias
Svedmyr, 1999 ⁴⁸	Unclear	Unclear	Unclear	Unclear	High	Unclear	Low	Unclear
Ghirga, 2002 ⁴⁶	Unclear	Unclear	High	High	Low	Unclear	Low	Medium
Bacharier, 2008 ⁴⁴	Low	Low	Low	Low	Low	Unclear	Low	Low
Ducharme, 2009 ⁴⁵	Low	Low	Low	Low	High	Low	Low	Low
Papi, 2009 ⁴⁷	Unclear	Unclear	Low	Low	Low	Low	Low	Low
Zeiger, 2011 ⁴⁹	Low	Low	Low	Low	Low	Low	Low	Low

Table D-2. Risk of bias assessment for KQ1b

Study, Year	Sequence Generation	Allocation concealment	Blinding of participants, personnel	Blinding of Outcome assessors	Incomplete outcome data	Selective outcome reporting	Other sources of bias	Overall risk of bias
Lahdensuo, 1996 ⁵⁹	Low	Low	Unclear	Unclear	Low	Uncleara	Low	Medium
Foresi, 2000 ⁴⁸	Unclear	Unclear	Unclear	Unclear	Low	Uncleara	Low	Unclear
Colland, 2004 ⁴⁶	Unclear	Unclear	Unclear	Unclear	Low	Uncleara	Low	Unclear
FitzGerald, 2004 ⁴⁷	Low	Unclear	Low	Low	High	Uncleara	Low	Low
Harrison, 2004 ⁵¹	Low	Low	Low	Low	Low	Uncleara	Low	Low
Boushey, 2005 ⁴³	Low	Unclear	Low	Low	Low	Uncleara	Low	Low
Papi, 2007 ⁵⁵	Low	Low	Low	Low	Low	Low	Low	Low
Turpeinen, 2007 ⁵⁶	Low	Unclear	Low	Low	Low	Uncleara	Low	Low
Oborne, 2009 ⁵⁸	Low	Low	Low	Low	Low	Low	Low	Low
Martinez, 2011 ⁵²	Low	Low	Low	Low	Low	Low ^b	Low	Low
Calhoun, 2012 ⁴⁴	Unclear	Low	Low	Low	Low	Low	Low	Low

Table D-3. Risk of bias assessment for KQ1c, ICS and LABA controller and quick relief vs. ICS controller (same dose)

Study, Year	Sequence Generation	Allocation concealment	Blinding of participants, personnel	Blinding of Outcome assessors	Incomplete outcome data	Selective outcome reporting	Other sources of bias	Overall risk of bias
Scicchitano, 2004 ⁸⁸	Low	Low	Low	Low	Low	Uncleara	Low	Low
Rabe, 2006 ⁸⁶	Unclear	Unclear	Low	Low	Low	Uncleara	Low	Low
Sovani, 2008 ⁹¹	Low	Low	High	High	High	Uncleara	Low	High

^aEndpoints are not specified as pre-planned, and could not identify published protocol (or clinicaltrials.gov)

^aEndpoints are not specified as pre-planned, and could not identify published protocol (or clinicaltrials.gov)

^bAll outcomes awarded a "Yes" with the exception of Asthma Control Test, which is listed as an endpoint on clinicaltrials.gov but results on this outcome is not reported (unclear)

Table D-4. Risk of bias assessment for KQ1c, ICS and LABA controller and quick relief vs. ICS controller (higher dose)

Study, Year	Sequence Generation	Allocation concealment	Blinding of participants, personnel	Blinding of Outcome assessors	Incomplete outcome data	Selective outcome reporting	Other sources of bias	Overall risk of bias
O'Byrne, 2005 ⁷⁵	Low	Unclear	Low	Low	Low	Low	Low	Low

Table D-5. Risk of bias assessment for KQ1c, ICS and LABA controller and quick relief vs. ICS and LABA controller (same dose)

Study, Year	Sequence Generation	Allocation concealment	Blinding of participants, personnel	Blinding of Outcome assessors	Incomplete outcome data	Selective outcome reporting	Other sources of bias	Overall risk of bias
O'Byrne, 2005 ⁷⁵	Low	Unclear	Low	Low	Low	Low	Low	Low
Vogelmeier, 2005 ⁹⁶	Low	Low	High	High	Low	Uncleara	Low	Medium ^b
Rabe, 2006 ⁸⁵	Low	Low	Low	Low	Low	Unclear ^c	Low	Low
Atienza, 2013 ⁶²	Low	Low	Low	Low	Low	Low	Low	Low
Papi, 2013 ⁷⁶	Low	Low	Unclear	Unclear	Low	Low	Low	Low
Patel, 2013 ⁷⁸	Low	Low	High	High	Low	Low	Low	Medium ^b
Hozawa, 2014 ⁷⁰	Unclear	Unclear	High	High	Low	Unclearc	Low	Medium
Takeyama, 2014 ⁹³	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear ^c	Low	Unclear
Stallberg, 2008 ⁹²	Low	Low	High	High	Low	Low	Low	Medium

^aAll outcomes were awarded an "unclear" with the exception of exacerbations, which is listed as being determined a priori (yes)

^bAll outcomes were awarded "medium" with the exception of death (low)

^cEndpoints are not specified as pre-planned, and could not identify published protocol (or clinicaltrials.gov)

Table D-6. Risk of bias assessment for KQ1c, ICS and LABA controller and quick relief vs. ICS and LABA controller (higher dose)

Study, Year	Sequence Generation	Allocation concealment	Blinding of participants, personnel	Blinding of Outcome assessors	Incomplete outcome data	Selective outcome reporting	Other sources of bias	Overall risk of bias
Bousquet, 2007 ⁶⁸	Low	Low	Low	Low	Low	Low	Low	Low
Kuna, 2007 ⁷³	Low	Low	Low	Low	Low	Uncleara	Low	Low
Pavord, 2009 ⁸¹	Low	Unclear	Low	Low	Low	Low	Low	Low
Lundborg, 2006 ¹⁰⁷	Low	Unclear	High	High	Low	Uncleara	Low	Medium
Stallberg, 2008 ⁹²	Low	Low	High	High	Low	Low	Low	Medium

^aEndpoints are not specified as pre-planned, and could not identify published protocol (or clinicaltrials.gov)

Table D-7. Risk of bias assessment for KQ1c, ICS and LABA controller and quick relief vs. ICS and LABA controller (lower dose)

Study, Year	Sequence Generation	Allocation concealment	Blinding of participants, personnel	Blinding of Outcome assessors	Incomplete outcome data	Selective outcome reporting	Other sources of bias	Overall risk of bias
Hozawa, 2016 ^{xx}	Unclear	Unclear	High	High	Low	Uncleara	Low	Medium

^aEndpoints are not specified as pre-planned, and could not identify published protocol (or clinicaltrials.gov)

Table D-8. Risk of bias assessment for KQ1c, ICS and LABA controller and quick relief vs. CBP

Study, Year	Sequence	Allocation	Blinding of	Blinding of	Incomplete	Selective	Other sources	Overall risk
otuay, rear	Generation	concealment	participants, personnel	Outcome assessors	outcome data	outcome reporting	of bias	of bias
Sears, 2008 ⁸⁹	Unclear	Unclear	High	High	Low	Low	Low	Medium ^a
Stallberg, 2008 ⁹²	Low	Low	High	High	Low	Low	Low	Medium
Louis, 2009 ⁷⁴	Unclear	Unclear	High	High	Low	Low ^b	Low	Medium ^a
Quirce, 2011 ⁸³	Unclear	Unclear	High	High	Low	Unclear ^c	Low	Medium ^a
Soes- Peterson, 2011 ⁹⁰	Unclear	Unclear	High	High	Low	Low	Low	Medium ^a
Riemersma, 2012 ⁸⁷	Unclear	Unclear	High	High	Low	Low	Low	Medium

^aAll outcomes were awarded "medium" with the exception of death (low)

Table D-9. Risk of bias assessment for non-randomized studies, KQ1c

Study, Year	Representativeness of exposed cohort	Selection of non- exposed cohort	Ascertainment of exposure	Outcome of interest not present at start of study	Comparability of cohorts	Assessment of outcome	Follow- up long enough	Adequacy of follow- up of cohorts	Overall risk of bias
Loh, 2008 ¹⁰⁶	Low	Low	Low	N/A	High ^a	Low	Low	Low	Medium
Kardos, 2013 ⁷¹	Low	Low	Low	N/A	Low ^b	Medium	Low	Low	Low

^aNo information about matching of patient cohorts either for inclusion or analysis

Table D-10. Risk of bias assessment for KQ2a

Study, Year	Sequence Generation	Allocation concealment	Blinding of participants, personnel	Blinding of Outcome assessors	Incomplete outcome data	Selective outcome reporting	Other sources of bias	Overall risk of bias
Peters, 2010 ¹⁹	Unclear	Unclear	Low	Low	Low	Low	Low	Low
Bateman, 2011 ¹⁰⁸	Low	Low	Low	Low	Low	Low	Low	Low
Kerstjens, 2015 ¹⁰⁹ (Study 1)	Low	Low	Low	Low	Low	Low	Low	Low
Kerstjens, 2015 ¹⁰⁹ (Study 2)	Low	Low	Low	Low	Low	Low	Low	Low
Lee, 2015 ¹¹⁰	Low	Low	Unclear	Unclear	Low	Low	Low	Unclear
Ohta, 2015 ¹¹¹	Low	Low	Low	Low	Low	Low ^a	Low	Low
Hamelmann, 2016 ¹¹³	Low	Unclear	Low	Low	Low	Low ^b	Low	Low
Paggiaro, 2016 ¹¹²	Low	Low	Low	Low	Low	Low	Low	Low

^aExacerbations were not reported but are an objective in the clinicaltrials.gov protocol (no)

^bAll outcomes awarded a "yes," with the exception of the Asthma Control Questionnaire and forced expiratory volume. These were reported but not specified as endpoints on clinicaltrials.gov (unclear)

^cThere is inconsistency between original and current secondary outcomes on clinicaltrials.gov (unclear). The primary endpoint is reported consistently across original and current secondary outcomes on clinicaltrials.gov (yes)

^bCohorts controlled/matched for analysis, but not inclusion

bSpirometry is not reported at the end of the treatment period and there is inconsistency on the timing of spirometry assessment on clinicaltrials.gov (unclear)

Table D-11. Risk of bias assessment for KQ2b

Study, Year	Sequence Generation	Allocation concealment	Blinding of participants, personnel	Blinding of Outcome assessors	Incomplete outcome data	Selective outcome reporting	Other sources of bias	Overall risk of bias
Peters, 2010 ¹⁹	Unclear	Unclear	Low	Low	Low	Low	Low	Low
Bateman, 2011 ¹⁰⁸	Low	Low	Low	Low	Low	Low	Low	Low
Rajanandh, 2014 ¹³⁶	Low	Low	High	High	High	Uncleara	Low	High
Kerstjens, 2015 ¹⁰⁹ (Study 1)	Low	Low	Low	Low	Low	Low	Low	Low
Kerstjens, 2015 ¹⁰⁹ (Study 2)	Low	Low	Low	Low	Low	Low	Low	Low
Lee, 2015 ¹¹⁰	Low	Low	Unclear	Unclear	Low	Low	Low	Unclear
Rajanandh, 2015 ¹³⁷	Low	Low	High	High	Low	Unclearb	Low	Medium
Wechsler, 2015 ¹³⁸	Low	Low	High	Low ^c	Low	Low	Low	Low

^aEndpoints are not specified as pre-planned, and could not identify published protocol (or clinicaltrials.gov)

Table D-12. Risk of bias assessment for KQ2c

Study, Year	Sequence Generation	Allocation concealment	Blinding of participants, personnel	Blinding of Outcome assessors	Incomplete outcome data	Selective outcome reporting	Other sources of bias	Overall risk of bias
Kerstjens, 2012 ¹⁴⁰ (Study 1)	Low	Low	Low	Low	Low	Low	Low	Low
Kerstjens, 2012 ¹⁴⁰ (Study 2)	Low	Low	Low	Low	Low	Low	Low	Low
Wang, 2015 ¹⁴¹	Unclear	Unclear	Unclear	Unclear	Low	Unclear ^a	Low	Unclear
Hamelmann, 2016 ¹⁴²	Low	Low	Low	Low	Low	Low	Low	Low

^aEndpoints are not specified as pre-planned, and no published protocol (or clinicaltrials.gov) is available

^bEndpoints are not specified as pre-planned, and could not identify published protocol (or clinicaltrials.gov)

^cBlinded adjudication was used for exacerbation, hospitalization and death endpoints (yes). It is unclear if this blinding was present for the remaining outcomes (unclear)

Appendix E. Strength of Evidence Assessments

Outcome	N of studies (n of patients)	Study limitations	Consistency	Directness	Precision	Publication bias	Strength of evidence (rational)
Exacerbations		•	•		•		,
Requiring oral corticosteroid	3 (324)	Low	Consistent	Direct	Imprecise	Undetected	Moderate (imprecise)
Requiring hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring ICU/ ventilation	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related hospitalization	3 (324)	Low	Inconsistent	Direct	Imprecise	Undetected	Low (inconsistent, imprecise)
Asthma-related ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related outpatient visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related acute care visit	3 (324)	Low	Consistent	Direct	Precise	Undetected	High
Mortality		•	•		•	•	•
All-cause	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-specific	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma control- composite measures							
ACT	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-7 score	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-7 responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma control- spirometry							
FEV1 peak	0	NA	NA	NA	NA	NA	Insufficient (no evidence)

Outcome	N of studies (n of patients)	Study limitations	Consistency	Directness	Precision	Publication bias	Strength of evidence (rational)
FEV1 trough	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1 AUC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1 % predicted	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FVC peak	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FVC trough	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FVC AUC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1/FVC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Quality of life							
AQLQ score	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
AQLQ responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
PACQLQ score	2 (270)	Low	Unknown consistency (single study)	Direct	Imprecise	Undetected	Low (unknown consistency, imprecise)
Healthcare utilization							
Daytime rescue medication use, mean puffs/day	1 (166)	Low	Unknown consistency (single study)	Direct	Precise	Undetected	Low
Nighttime rescue medication use, mean puffs/night	1 (166)	Low	Unknown consistency (single study)	Direct	Precise	Undetected	Low
Resource use	0	NA	NA	NA	NA	NA	Insufficient (no evidence)

Abbreviations: ACQ=Asthma Control Questionnaire; ACT=Asthma Control Test; AQLQ=Asthma Quality of Life Questionnaire; AUC=area under the curve; ER=emergency room; FVC=forced vital capacity; FEV1=forced expiratory volume in one second; ICU=intensive care unit; n=patient sample size; N=number of studies; NA=not applicable; PACQLQ=Pediatric Asthma Caregiver's Quality of Life Questionnaire

Table E-2. Strength of evidence KQ1a, intermittent ICS with as-needed SABA vs. ICS controller with as-needed SABA

able E-2. Strength of Outcome	N of studies (n of patients)	Study limitations	Consistency	Directness	Precision	Publication bias	Strength of evidence (rationale)
Exacerbations							(
Requiring oral corticosteroid	1 (278)	Low	Unknown consistency (single study)	Direct	Precise	Undetected	Low (unknown consistency)
Requiring hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring ICU/ ventilation	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related hospitalization	1 (278)	Low	Unknown consistency (single study)	Direct	Imprecise	Undetected	Low (unknown consistency, imprecise)
Asthma-related ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related outpatient visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related acute care visits	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Mortality		•					,
All-cause	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-specific	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma control- composite measures			•		•		,
ACT	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-7 score	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-7 responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma control- spirometry	•	•	•	'	•	-	1 \ 2 2 2 3 2 7
FEV1 peak	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1 trough	0	NA	NA	NA	NA	NA	Insufficient (no evidence)

Outcome	N of studies (n of patients)	Study limitations	Consistency	Directness	Precision	Publication bias	Strength of evidence (rationale)
FEV1 AUC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1 % predicted	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FVC peak	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FVC trough	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FVC AUC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1/FVC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Quality of life	•	•	•	•	•	<u> </u>	,
AQLQ score	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
AQLQ responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
PACQLQ score	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Healthcare utilization	•	•	•	•	•		,
Daytime rescue medication use, mean puffs/day	1 (220)	Low	Unknown consistency (single study)	Direct	Imprecise	Undetected	Low (unknown consistency, imprecise)
Nighttime rescue medication use, mean puffs/night	1 (220)	Low	Unknown consistency (single study)	Direct	Imprecise	Undetected	Low (unknown consistency, imprecise)
Resource use	0	NA CT A II	NA NA	NA	NA NA	NA	Insufficient (no evidence)

Abbreviations: ACQ=Asthma Control Questionnaire; ACT=Asthma Control Test; AQLQ=Asthma Quality of Life Questionnaire; AUC=area under the curve; ER=emergency room; FVC=forced vital capacity; FEV1=forced expiratory volume in one second; ICU=intensive care unit; n= patient sample size; N=number of studies; NA=not applicable; PACQLQ=Pediatric Asthma Caregiver's Quality of Life Questionnaire

Table E-3. Strength of evidence KQ1a, intermittent ICS vs. no therapy

Outcome	N of studies	Study	Consistency	Directness	Precision	Publication bias	Strength of
	(n of patients)	limitations					evidence
Exacerbations							
Requiring systemic	1	Low	Unknown	Direct	Imprecise	Undetected	Insufficient
corticosteroid	(26)		consistency				
			(single study)				
Requiring	0	NA	NA	NA	NA	NA	Insufficient
hospitalization							(no evidence)
Requiring ED visit	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)
Requiring ICU/	0	NA	NA	NA	NA	NA	Insufficient
ventilation							(no evidence)
Asthma-related	1	Low	Unknown	Direct	Imprecise	Undetected	Insufficient
hospitalization	(26)		consistency				
•	` ′		(single study)				
Asthma-related ER visit	1	Low	Unknown	Direct	Imprecise	Undetected	Insufficient
	(26)		consistency		'		
	` '		(single study)				
Asthma-related	0	NA	NA	NA	NA	NA	Insufficient
outpatient visit							(no evidence)
Asthma-related acute	0	NA	NA	NA	NA	NA	Insufficient
care visits							(no evidence)
Mortality	•	1	•	•	•	•	
All-cause	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)
Asthma-specific	0	NA	NA	NA	NA	NA	Insufficient
•							(no evidence)
Asthma control-	•	1	•	•	•	•	1
composite measures							
ACT	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)
ACQ-7 score	0	NA	NA	NA	NA	NA	Insufficient
110 Q 1 30016			14/7		INC	l NA	(no evidence)
ACQ-7 responder	0	NA	NA	NA	NA	NA	Insufficient
rios riospolidei		13/1	14/1	177	14/1	1 1/1	(no evidence)
Asthma control-	<u> </u>	1		<u> </u>			(110 eviderice)
spirometry							
FEV1 peak	0	NA	NA	NA	NA	NA	Insufficient
i Evi pour		147	14/1	1371	14/1	147	(no evidence)
FEV1 trough	0	NA	NA	NA	NA	NA	Insufficient
i L v i tiougii	"	INC.	IN/A	INC.	INA	ING.	
revi trougn	U	NA 	NA NA	NA	NA	NA	(no evidence

Outcome	N of studies (n of patients)	Study limitations	Consistency	Directness	Precision	Publication bias	Strength of evidence
FEV1 AUC	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)
FEV1 % predicted	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)
FVC peak	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)
FVC trough	0	NA	NA	NA	NA	NA	Insufficient
•							(no evidence)
FVC AUC	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)
FEV1/FVC	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)
Quality of life	•	•	•	1	•		/
AQLQ score	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)
AQLQ responder	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)
PACQLQ score	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)
Healthcare utilization				-		<u> </u>	
Daytime rescue	0	NA	NA	NA	NA	NA	Insufficient
medication use, mean							(no evidence)
puffs/day							`
Nighttime rescue	0	NA	NA	NA	NA	NA	Insufficient
medication use, mean							(no evidence)
puffs/night							`
Resource use	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)

Abbreviations: ACQ=Asthma Control Questionnaire; ACT=Asthma Control Test; AQLQ=Asthma Quality of Life Questionnaire; AUC=area under the curve; ER=emergency room; FVC=forced vital capacity; FEV1=forced expiratory volume in one second; ICU=intensive care unit; n= patient sample size; N=number of studies; NA=not applicable; PACQLQ=Pediatric Asthma Caregiver's Quality of Life Questionnaire;

Table E-4. Strength of evidence KQ1b, intermittent ICS and ICS controller vs. ICS controller

Table E-4. Strength Outcome	N of studies (n of patients)	Study limitations	Consistency	Directness	Precision	Publication bias	Strength of evidence
Exacerbations ≥12y	1.		•	<u> </u>		<u> </u>	•
Requiring oral corticosteroid (full population)	3 (908)	Low	Inconsistent	Direct	Imprecise	Undetected	Low (inconsistent, imprecise)
Requiring oral corticosteroid (of those that started study inhaler)	3 (399)	Low	Inconsistent	Direct	Imprecise	Undetected	Low (inconsistent, imprecise)
Requiring hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring ICU/ ventilation	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring oral corticosteroid, unscheduled doctor visit, ER, or unstable asthma ^a	1 (98)	Low	Unknown (single study)	Direct	Imprecise	Undetected	Low (unknown consistency, imprecise)
Asthma-related hospitalization	1 (115)	Medium	Unknown (single study)	Direct	Imprecise	Undetected	Insufficient (risk of bias, unknonw consistency, imprecise)
Asthma-related ER visits	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related outpatient visit	2 (505)	Low	Inconsistent	Direct	Imprecise	Undetected	Low (inconsistent, imprecise)
Asthma-related acute care visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Unstable asthma ^a	1 (98)	Low	Unknown (single study)	Direct	Imprecise	Undetected	Low (unknown consistency, imprecise)
2 or 3 exacerbations requiring oral corticosteroid (full population)	1 (403)	Low	Unknown (single study)	Direct	Imprecise	Undetected	Low (unknown consistency, imprecise)

Outcome	N of studies (n of patients)	Study limitations	Consistency	Directness	Precision	Publication bias	Strength of evidence
2 or 3 exacerbations requiring oral corticosteroid (of those starting the study inhaler)	1 (403)	Low	Unknown (single study)	Direct	Imprecise	Undetected	Low (unknown consistency, imprecise)
Fall in PEF <70% from baseline	1 (134)	Unclear	Unknown (single study)	Direct	Imprecise	Undeteced	Low (unknown consistency, imprecise)
Exacerbations 4 to 11y							
Requiring oral corticosteroid	1 (143)	Low	Unknown (single study)	Indirect	Imprecise	Undetected	Insufficient (unknonw consistency, indirect)
Requiring hospitalization	1 (29)	Unclear	Unknown (single study)	Direct	Imprecise	Undetected	Insufficient (unknonw consistency, imprecise)
Asthma-related hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related hospitalization or ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related outpatient visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Treatment failure ^b	1 (143)	Low	Unknown (single study)	Indirect	Imprecise	Undetected	Insufficient (unknonw consistency, indirect, imprecise)
Mortality					•		
All-cause	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-specific	0	NA	NA	NA	NA	NA	Insufficient (no evidence)

Outcome	N of studies (n of patients)	Study limitations	Consistency	Directness	Precision	Publication bias	Strength of evidence
ACT	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-7 score	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-7 responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma control- spirometry ≥12y				•		•	
FEV1 peak	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1 trough	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1 AUC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1 % predicted	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FVC peak	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FVC trough	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FVC AUC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1/FVC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma control- spirometry 4 to 11y							
FEV1 % predicted	1 (29)	Unclear	Unknown (single study)	Direct	Imprecise	Undetected	Insufficient (Unclear ROB, unknown consistency, imprecise)
Quality of life ≥12y		•	Table	T	T	T	T
AQLQ score	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
AQLQ responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
PACQLQ score	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Quality of life 4 to 11y		<u> </u>		<u> </u>			<u> </u>

Outcome	N of studies (n of patients)	Study limitations	Consistency	Directness	Precision	Publication bias	Strength of evidence
PAQLQ score	1 (143)	Low	Unknown (single study)	Indirect	Precise	Undetected	Low (unknown consistency, indirect)
Healthcare utilization ≥12y				·	·	•	
Daytime rescue medication use mean puffs /day	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Nighttime rescue medication use mean puffs /night	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Resource use	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Healthcare utilization 4 to 11y				·		•	
Albuterol puffs/ day	1 (143)	Low	Unknown (single study)	Indirect	Imprecise	Undetected	Insufficient (unknonw consistency, indirect, imprecise)

Abbreviations: ACQ=Asthma Control Questionnaire; ACT=Asthma Control Test; AQLQ=Asthma Quality of Life Questionnaire; AUC=area under the curve; ER=emergency room; FVC=forced vital capacity; FEV1=forced expiratory volume in one second; ICU=intensive care unit; n= patient sample size; N=number of studies; NA=not applicable; PACQLQ=Pediatric Asthma Caregiver's Quality of Life Questionnaire; PAQLQ=Pediatric Asthma Quality of Life Questionnaire; y=years

^aDefined as absence of stability, where stability was defined as morning peak expiratory flow 90% or more of mean baseline value on either of the two previous days, <4 inhalations of inhaled corticosteroid per day over the past 2 days, no nocturnal awakenings in the prior 2 nights and a total symptom score not exceeding mean baseline value more than 2 ordinal values over the previous 2 days

^bDefined as any of following: (1) Hospitalization due to asthma; (2) Hypoxic seizure due to asthma; (3) Intubation due to asthma; (4) Requirement for a second burst of prednisone within any 6 months period; (5) Significant adverse event related to the use of a study medication. The only criterion for assignment of treatment failure during the trial was the requirement for a second burst of prednisone within any 6 month period

Table E-4. Strength of evidence KQ1b, intermittent ICS vs. ICS controller

Outcome	N of studies	Study	Consistency	Directness	Precision	Publication bias	Strength of
	(n of patients)	limitations					evidence
Exacerbations ≥12y							
Requiring oral	1	Low	Unknown	Direct	Imprecise	Undetected	Low
corticosteroid	(149)		(single study)				(unknown
							consistency,
							imprecise)
Requiring	1	Low	Unknown	Direct	Precise	Undetected	Insufficient
hospitalization	(149)		(single study)				(no events occurred)
Requiring ER visit	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)
Requiring ICU/	0	NA	NA	NA	NA	NA	Insufficient
ventilation							(no evidence)
Asthma-related	0	NA	NA	NA	NA	NA	Insufficient
hospitalization							(no evidence)
Asthma-related ER visit	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)
Asthma-related	0	NA	NA	NA	NA	NA	Insufficient
outpatient visit		1					(no evidence)
Asthma-related urgent	1 (227)	Low	Unknown	Direct	Imprecise	Undetected	Low
care visit	(227)		(single study)				(unknown
							consistency,
N. C. d.						11.1.	imprecise)
Mild ^c or severe ^d	1	Low	Unknown	Direct	Imprecise	Undetected	Low
exacerbation	(228)	(single study)				(unknown	
							consistency,
0d	4	1	I la la acces	Discort	Income dia a	I lo doto etc d	imprecise)
Severe exacerbation ^d	1 (000)	Low	Unknown	Direct	Imprecise	Undetected	Low
	(228)		(single study)				(unknown
							consistency,
Exacerbations 4 to							imprecise)
11y Requiring oral	1	Low	Unknown	Indirect	Impresies	Undetected	Insufficient
corticosteroid	(143)	LOW		munect	Imprecise	Undetected	(unknown
Corticosteroid	(143)		(single study)				
							consistency, indirect, imprecise)
Treatment failure ^a	1	Low	Unknown	Indirect	Impresies	Undetected	Insufficient
Treatifient failure	(143)	LOW	(single study)	munect	Imprecise	Undetected	(unknown
	(143)		(Sirigle Study)				consistency, indirect,
							imprecise)
Mortality		1					imprecise)

Outcome	N of studies (n of patients)	Study limitations	Consistency	Directness	Precision	Publication bias	Strength of evidence
All-cause mortality	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-specific death	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma control- composite measures							
ACT	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-7 score	1 (149)	Low	Unknown (single study)	Direct	Precise	Undetected	Low (unknown consistency)
ACQ-7 responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-5 score	1 (227)	Low	Unknown (single study)	Direct	Precise	Undetected	Low (unknown consistency)
ACQ-5 responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma control- spirometry ≥12y	•					·	
FEV1 peak	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1 trough	2 (564)	Low	Consistent	Direct	Precise	Undetected	High
FEV1 AUC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1 % predicted	3 (713)	Low	Consistent	Direct	Imprecise	Undetected	Moderate (imprecise)
FVC peak	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FVC trough	1 (228)	Low	Unknown (single study)	Direct	Precise	Undetected	Low (unknonw consistency)
FVC AUC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1/FVC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FVC % predicted	1 (228)	Low	Unknown (single study)	Direct	Imprecise	Undetected	Low (unknown consistenct, imprecsie)

Outcome	N of studies	Study	Consistency	Directness	Precision	Publication bias	Strength of
<u> </u>	(n of patients)	limitations					evidence
Asthma control- spirometry 4 to 11y							
FEV1 % predicted	1 (143)	Low	Unknown (single study)	Indirect	Imprecise	Undetected	Insufficient (unknown consistency, indirect, imprecise)
Quality of life ≥12y							
AQLQ score	2 (376)	Low	Inconsistent	Direct	Precise	Undetected	Moderate (inconsistent)
AQLQ responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
PACQLQ score	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Quality of life 4 to 11y	1	•	1	•	•	•	,
PAQLQ score	1 (143)	Low	Unknown (single study)	Indirect	Precise	Undetected	Low (unknown consistency, indirect)
Healthcare utilization ≥12y	- 1	1	- 1	1	1	,	,
Albuterol puffs/day	2 (564)	Low	Consistent	Direct	Imprecise	Undetected	Moderate (imprecise)
Resource use	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Healthcare utilization 4 to 11y	•				•		•
Albuterol puffs/day	1 (143)	Low	Unknown (single study)	Indirect	Precise	Undetected	Low

Abbreviations: ACQ=Asthma Control Questionnaire; ACT=Asthma Control Test; AQLQ=Asthma Quality of Life Questionnaire; AUC=area under the curve; ER=emergency room; FVC=forced vital capacity; FEV1=forced expiratory volume in one second; ICU=intensive care unit; n= patient sample size; N=number of studies; NA=not applicable; PACQLQ=Pediatric Asthma Caregiver's Quality of Life Questionnaire; PAQLQ=Pediatric Asthma Quality of Life Questionnaire; y=years

^aDefined as any of following: (1) Hospitalization due to asthma; (2) Hypoxic seizure due to asthma; (3) Intubation due to asthma; (4) Requirement for a second burst of prednisone within any 6 months period; (5) Significant adverse event related to the use of a study medication. The only criterion for assignment of treatment failure during the trial was the requirement for a second burst of prednisone within any 6 month period

Defined as awakening at night owing to asthma or as a decrease in the morning peak expiratory flow rate to more than 20% below the baseline value, the use of more than three additional puffs per day of rescue medication (either albuterol or beclomethasone and albuterol) as compared with during the baseline for 2 or more consecutive days, or both. Single, isolated days on which mild exacerbation occurred were not counted

^dDefined as a decrease in the morning peak expiratory flow rate to more than 30% below the baseline value on 2 consecutive days or more than 8 puffs per day of rescue medication for 3 consecutive days or the need for treatment with oral corticosteroids, as judged by the investigator

Table E-5. Strength of evidence KQ1c, ICS and LABA controller and quick relief vs. ICS controller (same dose)

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
Exacerbations	, ,						
Requiring systemic corticosteroid	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring ICU/ ventilation	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related hospitalization or ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related outpatient visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring systemic corticosteroid, hospitalization, or ER visit	1 (1890)	Low	Unknown (single study)	Direct	Precise	Undetected	Moderate (unknown consistency)
Requiring systemic corticosteroid, hospitalization, ER visit, or PEF<70%	2 (2586)	Low	Consistent	Direct	Imprecise	Undetected	Moderate (imprecise)
Mortality							
All-cause	1 (1890)	Low	Unknown (single study)	Direct	Imprecise	Undetected	Insufficient (unknown consistency, imprecise)
Asthma-specific	1 (1890)	Low	Consistent	Direct	Precise	Undetected	Insufficient (no events occurred)
Asthma control- composite measures	•	·	·	•	·	·	. ,
ACT	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-5 score	0	NA	NA	NA	NA	NA	Insufficient (no evidence)

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
ACQ-5 responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma control- spirometry						·	
FEV1	1 (1890)	Low	Unknown (single study)	Direct	Precise	Undetected	Moderate (unknown consistency)
FEV1 % predicted	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FVC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1/ FVC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Quality of Life	•	•	•	•	•	•	
AQLQ score	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
AQLQ responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Healthcare Utilization	•					•	,
Mean PRN inhalations/ day	1 (697)	Low	Unknown (single study)	Direct	Imprecise	Undetected	Low (unknown consistency, imprecise)
Mean PRN inhalations/ week	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Resource use	0	NA	NA	NA	NA	NA	Insufficient (no evidence)

Abbreviations: ACQ=Asthma Control Questionnaire; ACT=Asthma Control Test; AQLQ=Asthma Quality of Life Questionnaire; ER=emergency room; FVC=forced vital capacity; FEV1=forced expiratory volume in one second; ICU=intensive care unit; n=patient sample size; N=number of studies; NA=not applicable; PRN=pro re nata (i.e., asneeded

able E-6. Strength of evi Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
Exacerbations ≥12 years							
Requiring systemic corticosteroid	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring ED visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring ICU/ ventilation	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring systemic corticosteroid, hospitalization, ER visit, or PEF<70% (increase in ICS or other medication as well for 4 to 11 year olds)	1 (1851)	Low	Unknown (single study)	Indirect	Precise	Undetected	Low (unknown consistency, indirect)
Requiring systemic corticosteroids, nospitalization, or ER visit increase in ICS or other nedication as well for 4 to 11 year olds)	1 (1851)	Low	Unknown (single study)	Indirect	Precise	Undetected	Low (unknown consistency, indirect)
Asthma-related nospitalization	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related nospitalization or ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related outpatient visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Exacerbations 4 to 11 years	•			•			•
Requiring systemic corticosteroid, hospitalization, ER visit, increase in ICS or other medication, or PEF <70%	1 (224)	Low	Unknown (single study)	Indirect	Imprecise	Undetected	Low (unknown consistency, indirect)
Requiring systemic corticosteroid, nospitalization, or ER visit	1 (224)	Low	Unknown (single study)	Indirect	Imprecise	Undetected	Low (unknown consistency, indirect)

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
Asthma-related hospitalization	Ò	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related hospitalization or ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related outpatient visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Mild exacerbation	1 (224)	Low	Unknown (single study)	Indirect	Precise	Undetected	Low (unknown consistency, indirect)
Mortality			•			•	•
All-cause	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-specific	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma control- composite measures					·		
ACT	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-5 score	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-5 responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma control- spirometry							
FEV1	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1 % predicted	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FVC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1/ FVC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Quality of Life	•	•	•	•	•		
AQLQ score	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
AQLQ responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Healthcare utilization	•	•	•	•	•	•	

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
Mean PRN inhalations/ day	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Mean PRN inhalations/ week	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Resource use	0	NA	NA	NA	NA	NA	Insufficient (no evidence)

Abbreviations: ACQ=Asthma Control Questionnaire; ACT=Asthma Control Test; AQLQ=Asthma Quality of Life Questionnaire; ER=emergency room; FVC=forced vital capacity; FEV1=forced expiratory volume in one second; ICU=intensive care unit; n=patient sample size; N=number of studies; NA=not applicable; PRN=pro re nata (i.e., asneeded)

Table E-7. Strength of evidence KQ1c, ICS and LABA controller and guick relief vs. ICS and LABA controller (same dose)

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
Exacerbations ≥12y							
Requiring systemic corticosteroid	(3792)	Low	Consistent	Direct	Precise	Undetected	High
Requiring hospitalization	2 (2224)	Low	Inconsistent	Direct	Imprecise	Undetected	Low (inconsistent, imprecise)
Requiring ER visit	1 (2091)	Low	Unknown (single study)	Direct	Precise	Undetected	Moderate (unknown consistency)
Requiring ICU/ ventilation	1 (1701)	Low	Unknown (single study)	Direct	Precise	Undetected	Insufficient (no events occurred)
Requiring systemic corticosteroid, hospitalization, or ER visit	5 (8483)	Low	Consistent	Direct	Precise	Undetected	High
Requiring hospitalization or ER visit	5 (8313)	Low	Consistent	Direct	Precise	Undetected	High
Asthma-related outpatient visits	Ò	NA	NA	NA	NA	NA	Insufficient (no data)
Requiring systemic corticosteroid, hospitalization, ER visit, or unscheduled visit	1 (2143)	Medium	Unknown (single study)	Direct	Precise	Undetected	Moderate (unknown consistency)
Mild exacerbation	3 (6037)	Low	Inconsistent	Direct	Precise	Undetected	Moderate (unknown consistency)

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
Requiring systemic corticosteroid, hospitalization, ER visit, increase in ICS or other medication, or PEF <70%	1 (341)	Low	Unknown (single study)	Indirect	Precise	Undetected	Low (unknown consistency, indirect)
Exacerbations requiring hospitalization, systemic corticosteroids, ER, or increase in ICS or other medications	1 (341)	Low	Unknown (single study)	Indirect	Precise	Undetected	Low (unknown consistency, indirect)
Mild exacerbations	1 (341)	Low	Unknown (single study)	Indirect	Precise	Undetected	Low (unknown consistency, indirect)
Mortality ≥12y	T	_			.		.
All-cause	4 (6782)	Low	Consistent	Direct	Imprecise	Undetected	Moderate (imprecise)
Asthma-specific	4 (6782)	Low	Consistent	Direct	Precise	Undetected	Insufficient (no events occurred)
Asthma control- composite measures ≥ 12y	•						,
ACT	1 (63)	Unclear	Unknown (single study)	Direct	Precise	Undetected	Insufficient (unknown consistency)
ACQ-5 score	3 (4353)	Low	Inconsistent	Direct	Imprecise	Undetected	Low (inconsistent, imprecise)
ACQ-5 responder	1 (2091)	Low	Unknown (single study)	Direct	Precise	Undetected	Moderate (unknown consistency)
Asthma control- spirometry ≥12y	•	-	•	·	•	·	
FEV1	5 (6343)	Low	Inconsistent	Direct	Imprecise	Undetected	Low (inconsistent, imprecise)
FEV1 % predicted	2 (304)	Medium	Consistent	Direct	Precise	Undetected	Moderate (risk of bias)

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
FVC	1 (1701)	Low	Unknown (single study)	Direct	Imprecise	Undetected	Low (unknown consistency, imprecise)
FEV1/FVC	0	NA	NA	NA	NA	NA	Insufficient (no data)
Quality of life ≥12y							
AQLQ score	0	NA	NA	NA	NA	NA	Insufficient (no data)
AQLQ responder	0	NA	NA	NA	NA	NA	Insufficient (no data)
Healthcare utilization ≥12y	•		•		•		
Mean PRN inhalations/ day	3 (6006)	Low	Inconsistent	Direct	Imprecise	Undetected	Low (inconsistent, imprecise)
Mean PRN inhalations/ week	2 (93)	Medium	Consistent	Direct	Imprecise	Undetected	Low (risk of bias, imprecise)
Resource use	0	NA	NA	NA	NA	NA	Insufficient (no data)

Abbreviations: ACQ=Asthma Control Questionnaire; ACT=Asthma Control Test; AQLQ=Asthma Quality of Life Questionnaire; ER=emergency room; FVC=forced vital capacity; FEV1=forced expiratory volume in one second; ICS=inhaled corticosteroid; ICU=intensive care unit; n= patient sample size; N=number of studies; NA=not applicable; PEF=peak expiratory flow; PRN=pro re nata (i.e., as-needed); y=year

Table E-8. Strength of evidence KQ1c, ICS and LABA controller and quick relief vs. ICS and LABA controller (higher dose)

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
Exacerbations	,						
Requiring systemic corticosteroid	1 (2304)	Low	Unknown (single study)	Direct	Precise	Undetected	Moderate (unknown consistency)
Requiring hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no data)
Requiring ER visit	0	NA	NA	NA	NA	NA	Insufficient (no data)
Requiring ICU/ ventilation	0	NA	NA	NA	NA	NA	Insufficient (no data)
Asthma-related hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no data)
Asthma-related ER visit	0	NA	NA	NA	NA	NA	Insufficient (no data)
Asthma-related outpatient visit	0	NA	NA	NA	NA	NA	Insufficient (no data)
Requiring systemic corticosteroid, hospitalization, or ER visit	3 (6742)	Low	Consistent	Direct	Precise	Undetected	High
Requiring hospitalization or ER visit	3 (6742)	Low	Consistent	Direct	Imprecise	Undetected	Moderate (imprecise)
Mild exacerbation	2 (3321)	Low	Unknown ^a	Direct	Precise	Undetected	Moderate (unknown consistency)
Mortality						L	
All-cause	4 (5757)	Low	Consistent	Direct	Imprecise	Undetected	Moderate (imprecise)
Asthma-specific	4 (5757)	Low	Consistent	Direct	Precise	Undetected	Insufficient (no events occurred)
Asthma control- composite measures					•	·	•
ACT	0	NA	NA	NA	NA	NA	Insufficient (no data)
ACQ-5 score	3 (6559)	Low	Consistent	Direct	Precise	Undetected	High

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
ACQ-5 responder	Ö	NA	NA	NA	NA	NA	Insufficient (no data)
Asthma control- spirometry						·	T (No data)
FEV1	2 (4424)	Low	Unknown ^a	Direct	Precise	Undetected	Moderate (unknown consistency)
FVC	0	NA	NA	NA	NA	NA	Insufficient (no data)
FEV1/FVC	0	NA	NA	NA	NA	NA	Insufficient (no data)
Quality of life				•		•	,
AQLQ(S) score	2 (4270)	Low	Unknown ^a	Direct	Precise	Undetected	Moderate (unknown consistency)
AQLQ responder	0	NA	NA	NA	NA	NA	Insufficient (no data)
Healthcare utilization	1					·	
Mean PRN inhalations/day	3 (6559)	Low	Consistent	Direct	Precise	Undetected	High
Resource use	0	NA	NA	NA	NA	NA	Insufficient (no data)

Abbreviations: ACQ=Asthma Control Questionnaire; ACT=Asthma Control Test; AQLQ=Asthma Quality of Life Questionnaire; AQLQ(S)=standardized Asthma Quality of Life Questionnaire; ER=emergency room; FVC=forced vital capacity; FEV1=forced expiratory volume in one second; ICU=intensive care unit; n=patient sample size; N=number of studies; NA=not applicable; PRN=pro re nata (i.e., as-needed)

Table E-9. Strength of evidence KQ1c, ICS and LABA controller and quick relief vs. ICS and LABA controller (lower dose)

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
Exacerbations							
Requiring systemic corticosteroid	0	NA	NA	NA	NA	NA	Insufficient (no data)
Requiring hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no data)
Requiring ER visit	0	NA	NA	NA	NA	NA	Insufficient (no data)
Requiring ICU/ ventilation	0	NA	NA	NA	NA	NA	Insufficient (no data)
Asthma-related hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no data)

^aA single 3-arm trial contributed two unique comparisons for this outcome. Thus, the consistency with an independent trial population is unknown

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
Asthma-related ER visit	0	NA	NA	NA	NA	NA	Insufficient (no data)
Asthma-related outpatient visit	0	NA	NA	NA	NA	NA	Insufficient (no data)
Mortality	1	T		T		1	1
All-cause	0	NA	NA	NA	NA	NA	Insufficient (no data)
Asthma-specific	0	NA	NA	NA	NA	NA	Insufficient (no data)
Asthma control- composite measures					·	•	
ACT	0	NA	NA	NA	NA	NA	Insufficient (no data)
ACQ-5 score	1 (30)	Medium	Unknown (single study)	Direct	Imprecise	Undetected	Insufficient (risk of bias, unknown consistency, imprecise)
ACQ-5 responder	0	NA	NA	NA	NA	NA	Insufficient (no data)
Asthma control- spirometry			-		<u>'</u>		
FEV1 % predicted	1 (30)	Medium	Unknown (single study)	Direct	Precise	Undetected	Insufficient (risk of bias, unknown consistency, imprecise)
FVC	0	NA	NA	NA	NA	NA	Insufficient (no data)
FEV1/FVC	0	NA	NA	NA	NA	NA	Insufficient (no data)
Quality of life	ı	1	1	l	L	'	1 \/
AQLQ(S) score	0	NA	NA	NA	NA	NA	Insufficient (no data)
AQLQ responder	0	NA	NA	NA	NA	NA	Insufficient (no data)

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
Mean PRN inhalations/week	1 (30)	Medium	Unknown (single study)	Direct	Imprecise	Undetected	Insufficient (risk of bias, unknown consistency, imprecise)
Resource use	0	NA	NA	NA	NA	NA	Insufficient (no data)

Table E-10. Strength of evidence KQ1c, ICS and LABA controller and quick relief vs. CBP

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
Exacerbations							
Requiring systemic corticosteroid	4 (4935)	Medium	Consistent	Direct	Imprecise	Undetected	Low (risk of bias, imprecise)
Requiring hospitalization	4 (4935)	Medium	Consistent	Direct	Imprecise	Undetected	Low (risk of bias, imprecise)
Requiring ER visit	4 (4935)	Medium	Consistent	Direct	Imprecise	Undetected	Low (risk of bias, imprecise)
Requiring ICU/ ventilation	0	NA	NA	NA	NA	NA	Insufficient (no data)
Asthma-related hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no data)
Asthma-related ER visit	0	NA	NA	NA	NA	NA	Insufficient (no data)
Asthma-related outpatient visit	0	NA	NA	NA	NA	NA	Insufficient (no data)
Requiring systemic corticosteroid, hospitalization, or ER visit	6 (6354)	Medium	Consistent	Direct	Precise	Undetected	Moderate (risk of bias)
Mortality							
All-cause	4 (4935)	Low	Consistent	Direct	Imprecise	Undetected	Moderate (imprecise)
Asthma-specific	4 (4935)	Low	Consistent	Direct	Precise	Undetected	Insufficient (no events occurred)

composite measures

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
ACT	0	NA	NA	NA	NA	NA	Insufficient (no data)
ACQ-5 score	5 (4996)	Medium	Consistent	Direct	Precise	Undetected	Moderate (risk of bias)
ACQ-5 responder	2 (2166)	Medium	Consistent	Direct	Precise	Undetected	Moderate (risk of bias)
Asthma control- spirometry							
FEV1	1 (271)	Medium	Unknown (single study)	Direct	Precise	Undetected	Low (unknown consistency)
FEV1 % predicted	1 (102)	Medium	Unknown (single study)	Direct	Precise	Undetected	Low (unknown consistency)
FVC	0	NA	NA	NA	NA	NA	Insufficient (no data)
FEV1/ FVC	0	NA	NA	NA	NA	NA	Insufficient (no data)
Quality of life	•		•			•	, , , , , , , , , , , , , , , , , , ,
AQLQ score	0	NA	NA	NA	NA	NA	Insufficient (no data)
AQLQ responder	0	NA	NA	NA	NA	NA	Insufficient (no data)
Healthcare utilization							
Mean PRN inhalations/ day	2 (2404)	Medium	Consistent	Direct	Precise	Undetected	Moderate (risk of bias)
≥1 day w/PRN inhalation	2 (1562)	Medium	Inconsistent	Direct	Imprecise	Undetected	Low (inconsistent, imprecise)
Resource use	0	NA CT A 1	NA NA	NA	NA FR	NA mergency room: FVC=forced	Insufficient (no data)

Abbreviations: ACQ=Asthma Control Questionnaire; ACT=Asthma Control Test; AQLQ=Asthma Quality of Life Questionnaire; ER=emergency room; FVC=forced vital capacity; FEV1=forced expiratory volume in one second; ICU=intensive care unit; n= patient sample size; N=number of studies; NA=not applicable; PRN=pro re nata (i.e., asneeded)

Table E-11. Strength of evidence KQ 2a, LAMA as add-on to ICS vs. doubling ICS dose

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
Exacerbations	, ,	•	_	<u> </u>			
Requiring systemic corticosteroid	1 (210)	Low	Unknown (single study)	Direct	Imprecise	Undetected	Low (unknown consistency, imprecise)
Requiring hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring ICU/ ventilation	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related outpatient visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma worsening	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring oral corticosteroid or increase in ICS or other asthma medication	1 (210)	Low	Unknown (single study)	Direct	Imprecise	Undetected	Low (unknown consistency, imprecise)
Mortality							,
All-cause	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-specific	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma control- composite measures			•		•		
ACT	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-6 score	1 (127)	Low	Unknown (single study)	Direct	Precise	Undetected	Low (unknown consistency)
ACQ-6 responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma control- spirometry					<u> </u>		

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
FEV1 peak	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1 trough	1 (118)	Low	Unknown (single study)	Direct	Imprecise	Undetected	Low (unknown consistency, imprecise)
FEV1 AUC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1 % predicted	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FVC peak	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FVC trough	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FVC AUC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FEV1/FVC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Quality of life				•		•	
AQLQ score	1 (122)	Low	Unknown (single study)	Direct	Precise	Undetected	Low (unknown consistency)
AQLQ responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Healthcare utilization							
Rescue medication use, puffs/24 hours	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Resource use	0	NA	NA	NA	NA	NA ERROR OF THE COMMON TO THE COMMON THE COMMON TO THE COMMON THE COMMON TO THE COMMON TO THE COMMON THE COMMON TO THE COMMON TH	Insufficient (no evidence)

Abbreviations: ACQ=Asthma Control Questionnaire; ACT=Asthma Control Test; AQLQ=Asthma Quality of Life Questionnaire; AUC=area under curve; ER=emergency room; FVC=forced vital capacity; FEV1=forced expiratory volume in one second; ICS=inhaled corticosteroid; ICU=intensive care unit; n= patient sample size; N=number of studies; NA=not applicable;

Table E-12. Strength of evidence KQ2a, LAMA vs. placebo as add-on to ICS

able E-12. Strength o Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
Exacerbations	, ,						
Requiring systemic corticosteroid	5 (3036)	Low	Consistent	Direct	Precise	Undetected	High
Requiring hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring ED visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring ICU/ ventilation	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related outpatient visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma worsening	4 (2420)	Low	Consistent	Direct	Precise	Undetected	High
Mortality							
All-cause mortality	6 (3065)	Low	Consistent	Direct	Precise	Undetected	Insufficient (no events occurred)
Asthma-specific deaths	6 (3065)	Low	Consistent	Direct	Precise	Undetected	Insufficient (no events occurred)
Asthma control- composite measures					"	1	
ACT	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-5 score	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-5 responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-6 score	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-6 responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-7 score	4 (2304)	Low	Inconsistent	Direct	Precise	Undetected	Moderate (inconsistent)
ACQ-7 responder	5 (2680)	Low	Inconsistent	Direct	Precise	Undetected	Moderate (inconsistent)

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
Asthma control- spirometry				1		-	
FEV1 peak	4 (2310)	Low	Consistent	Direct	Precise	Undetected	High
FEV1 trough	7 (3173)	Low	Consistent	Direct	Precise	Undetected	High
FEV1 AUC	3 (2310)	Low	Consistent	Direct	Precise	Undetected	High
FEV1 % predicted	1 (457)	Low	Unknown (single study)	Direct	Precise	Undetected	Low (unknown consistency)
FVC peak	3 (1853)	Low	Consistent	Direct	Precise	Undetected	High
FVC trough	5 (2390)	Low	Consistent	Direct	Precise	Undetected	High
FVC AUC	3 1859)	Low	Consistent	Direct	Precise	Undetected	High
FEV1/FVC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Quality of life			•	•		•	
AQLQ score	2 (1461)	Low	Consistent	Direct	Precise	Undetected	High
AQLQ responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
AQLQ-mini score	1 (253)	Low	Unknown (single study)	Direct	Precise	Undetected	Low (unknown consistency)
AQLQ-S 12+ responder	1 (397)	Low	Unknown (single study)	Direct	Precise	Undetected	Low (unknown consistency)
Healthcare utilization	•	•	•	•	•		
Rescue medication use, puffs/24 hours	7 (3104)	Low	Inconsistent	Direct	Precise	Undetected	Moderate (inconsistent)
Resource use	Ô	NA	NA	NA	NA	NA D-S=Standardized Asthma Ou	Insufficient (no evidence)

Abbreviations: ACQ=Asthma Control Questionnaire; ACT=Asthma Control Test; AQLQ=Asthma Quality of Life Questionnaire; AQLQ-S=Standardized Asthma Quality of Life Questionnaire; AUC=area under curve; ER=emergency room; FVC=forced vital capacity; FEV1=forced expiratory volume in one second; ICU=intensive care unit; n= patient sample size; N=number of studies; NA=not applicable

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
Exacerbations		•	•	•	<u> </u>	•	•
Requiring systemic corticosteroid	4 (2574)	Low	Inconsistent	Direct	Imprecise	Undetected	Low (inconsistent, imprecise)
Requiring hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring ICU/ ventilation	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related outpatient visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma worsening	1 (1577)	Low	Unknown (single study)	Direct	Precise	Undetected	Moderate (unknown consistency)
Requiring oral corticosteroid or increase in ICS or other asthma medication	1 (210)	Low	Unknown (single study)	Direct	Imprecise	Undetected	Low (unknown consistency, imprecise)
Mortality				-			-
All-cause	4 (3572)	Low	Inconsistent	Direct	Imprecise	Undetected	Low (inconsistent, imprecise)
Asthma-specific	4 (3572)	Low	Inconsistent	Direct	Imprecise	Undetected	Low (inconsistent, imprecise)
Asthma control- composite measures							
ACT	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-5 score	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-5 responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
ACQ-6 score	1 (126)	Low	Unknown (single study)	Direct	Imprecise	Undetected	Low (unknown consistency, imprecise)
ACQ-6 responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-7 score	2 (1577)	Low	Consistent	Direct	Precise	Undetected	High
ACQ-7 responder	2 (1577)	Low	Consistent	Direct	Precise	Undetected	High
Asthma control- spirometry			•	•			•
FEV1 peak	2 (1483)	Low	Consistent	Direct	Precise	Undetected	High
FEV1 trough	6 (3261)	Low	Consistent	Direct	Precise	Undetected	High
FEV1 AUC	2 (1483)	Low	Consistent	Direct	Precise	Undetected	High
FEV1 % predicted	3 (542)	Medium	Inconsistent	Direct	Precise	Undetected	Low (risk of bias, inconsistent)
FVC peak	2 (1483)	Low	Consistent	Direct	Precise	Undetected	High
FVC trough	2 (1745)	Low	Consistent	Direct	Precise	Undetected	High
FVC AUC	2 (1483)	Low	Consistent	Direct	Precise	Undetected	High
FEV1/FVC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Quality of life							
AQLQ score	4 (1982)	Low	Consistent	Direct	Precise	Undetected	High
AQLQ responder	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
AQLQ-mini score	1 (262)	Low	Unknown (single study)	Direct	Precise	Undetected	Low (unknown consistency)
AQLQ-S 12+ responder Healthcare utilization	0	NA	NA	NA	NA	NA	Insufficient (no evidence)

Outcome	N of studies (n of patients)	Risk of bias	Consistency	Directness	Precision	Publication bias	Strength of evidence
Rescue medication use, puffs/24 hours	7 (2450)	Low	Inconsistent	Direct	Imprecise	Undetected	Low (inconsistent, imprecise)
Resource use	0	NA	NA	NA	NA	NA	Insufficient (no evidence)

Abbreviations: ACQ=Asthma Control Questionnaire; ACT=Asthma Control Test; AQLQ=Asthma Quality of Life Questionnaire; AQLQ-S= Standardized Asthma Quality of Life Questionnaire; AUC=area under curve; ER=emergency room; FVC=forced vital capacity; FEV1=forced expiratory volume in one second; h=hour; ICU=intensive care unit; LAMA=long acting muscarinic antagonist; n= patient sample size; N=number of studies; NA=not applicable

Table E-14. Strength of evidence KQ2a, LAMA vs. controller other than LABA as add-on to ICS

Outcome	N of studies (n of patients)	Study limitations	Consistency	Directness	Precision	Publication bias	Strength of evidence
Exacerbations	<u> </u>	•	•	•	•	•	•
Requiring systemic corticosteroid	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Requiring ICU/ ventilation	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related hospitalization	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related ER visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-related outpatient visit	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma worsening	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Mortality	•	1	•	•	•	•	,
All-cause	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma-specific	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Asthma control- composite measures		•	•	•	<u>.</u>		
ACT	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-5 score	0	NA	NA	NA	NA	NA	Insufficient (no evidence)

Outcome	N of studies (n of patients)	Study limitations	Consistency	Directness	Precision	Publication bias	Strength of evidence
ACQ-5 responder	Ò	NA	NA	NA	NA	NA	Insufficient
·							(no evidence)
ACQ-6 score	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)
ACQ-6 responder	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)
ACQ-7 score	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)
ACQ-7 responder	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)
Asthma control-							
spirometry	T	1					T
FEV1 peak	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)
FEV1 trough	0	NA	NA	NA	NA	NA	Insufficient
		1		1			(no evidence)
FEV1 AUC	0	NA	NA	NA	NA	NA	Insufficient
		.					(no evidence)
FEV1 % predicted	2	Medium	Consistent	Direct	Precise	Undetected	Moderate
LAMA vs. montelukast	(214)			5: .			(risk of bias)
FEV1 % predicted	2	Medium	Consistent	Direct	Precise	Undetected	Moderate
LAMA vs. doxofylline	(209)		N.10	1.14	N.1.0	110	(risk of bias)
FVC peak	0	NA	NA	NA	NA	NA	Insufficient
F) (0 / 1		1.1.0	1.10	1 114	210	110	(no evidence)
FVC trough	0	NA	NA	NA	NA	NA	Insufficient
FVC AUC	0	NA	NA	NA	NA	NA	(no evidence) Insufficient
FVC AUC	0	INA	NA NA	NA	NA	NA NA	
FEV1/FVC		NIA	NIA	NIA	NIA	NA	(no evidence) Insufficient
FEV1/FVC	0	NA	NA	NA	NA	NA	(no evidence)
Quality of life							(no evidence)
Quality of life AQLQ score	0	NA	NA	NA	NA	NA	Insufficient
AULU SCOIE	١٠	INA	INA	INA	INA	INA	(no evidence)
AQLQ responder	0	NA	NA	NA	NA	NA	Insufficient
AQLQ responder	١٠	INA	INA	INA	INA	INA	(no evidence)
AQLQ-mini score	0	NA	NA	NA	NA	NA	Insufficient
AQLQ-IIIIII SCOIE	U	INA	INA	INA	INA	INA	(no evidence)
AOLO C 12 L roopender	0	NA	NA	NA	NA	NA	Insufficient
AQLQ-S 12+ responder	U	INA	INA	INA	INA	INA	(no evidence)
Healthcare utilization	1	1					(no evidence)

Outcome	N of studies	Study	Consistency	Directness	Precision	Publication bias	Strength of
	(n of patients)	limitations					evidence
Rescue medication use,	2	Medium	Inconsistent	Direct	Precise	Undetected	Low
puffs/24 hours	(214)						(risk of bias,
LAMA vs. montelukast							inconsistent)
Rescue medication use,	2	Medium	Inconsistent	Direct	Precise	Undetected	Low
puffs/24 hours	(209)						(risk of bias
LAMA vs. doxofylline							inconsistent)
Resource use	0	NA	NA	NA	NA	NA	Insufficient
							(no evidence)

Abbreviations: ACQ=Asthma Control Questionnaire; ACT=Asthma Control Test; AQLQ=Asthma Quality of Life Questionnaire; AQLQ-S= Standardized Asthma Quality of Life Questionnaire; AUC=area under curve; ER=emergency room; FVC=forced vital capacity; FEV1=forced expiratory volume in one second; h=hour; ICU=intensive care unit; LAMA=long acting muscarinic antagonist; n=patient sample size; N=number of studies; NA=not applicable

Table E-15. Strength of evidence KQ2c, LAMA and ICS and LABA vs. ICS and LABA

	limitations					evidence
					·	
3 (1299)	Low	Consistent	Direct	Imprecise	Undetected	Moderate (imprecise)
2 (907)	Low	Consistent	Direct	Imprecise	Undetected	Moderate (imprecise)
0	NA	NA	NA	NA	NA	Insufficient (no evidence)
0	NA	NA	NA	NA	NA	Insufficient (no evidence)
0	NA	NA	NA	NA	NA	Insufficient (no evidence)
0	NA	NA	NA	NA	NA	Insufficient (no evidence)
0	NA	NA	NA	NA	NA	Insufficient (no evidence)
3 (1299)	Low	Consistent	Direct	Precise	Undetected	High
,	•		•		•	
3 (1299)	Low	Consistent	Direct	Precise	Undetected	Insufficient (no events occurred)
3 (1299)	Low	Consistent	Direct	Precise	Undetected	Insufficient (no events occurred)
	(1299) 2 (907) 0 0 0 0 0 0 3 (1299) 3 (1299)	(1299) 2	(1299) Low Consistent (907) NA NA 0 NA NA 3 Low Consistent (1299) Consistent 3 Low Consistent	(1299) Consistent Direct (907) NA NA NA 0 NA NA NA 3 Low Consistent Direct 3 (1299) Low Consistent Direct 3 Low Consistent Direct	(1299) Low Consistent Direct Imprecise (907) NA NA NA NA 0 NA NA NA NA 3 Low Consistent Direct Precise 3 Low Consistent Direct Precise 3 Low Consistent Direct Precise	(1299) Low Consistent Direct Imprecise Undetected (907) NA NA NA NA NA NA 0 NA NA NA NA NA NA 3 Low Consistent Direct Precise Undetected 3 Low Consistent Direct Precise Undetected

Outcome	N of studies (n of patients)	Study limitations	Consistency	Directness	Precision	Publication bias	Strength of evidence
ACT	1 (63)	Unclear	Unknown (single study)	Direct	Imprecise	Undetected	Low (unknown consistency, imprecise)
ACQ-5 score	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
ACQ-5 responder	1 (907)	Low	Unknown (single study)	Direct	Imprecise	Undetected	Low (unknown consistency, imprecise)
ACQ-6 score	1 (338)	Low	Unknown (single study)	Direct	Precise	Undetected	Low (unknown consistency)
ACQ-6 responder	2 (1299)	Low	Inconsistent	Direct	Imprecise	Undetected	Low (inconsistent, imprecise)
ACQ-7 score	3 (1301)	Low	Inconsistent	Direct	Precise	Undetected	Moderate (inconsistent)
ACQ-7 responder	2 (1299)	Low	Inconsistent	Direct	Precise	Undetected	Moderate (inconsistent)
Asthma control- spirometry					·	·	
FEV1 peak	3 (1295)	Low	Inconsistent	Direct	Precise	Undetected	Moderate (inconsistent)
FEV1 trough	3 (1295)	Low	Inconsistent	Direct	Precise	Undetected	Moderate (inconsistent)
FEV1 AUC	3 (1295)	Low	Consistent	Direct	Precise	Undetected	High
FEV1 % predicted	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
FVC peak	3 (1295)	Low	Consistent	Direct	Precise	Undetected	High
FVC trough	3 (1295)	Low	Consistent	Direct	Precise	Undetected	High
FVC AUC	3 (1295)	Low	Consistent	Direct	Precise	Undetected	High
FEV1/FVC	0	NA	NA	NA	NA	NA	Insufficient (no evidence)
Quality of life	•	•	•	•	•	•	, ,
AQLQ score	2 (907)	Low	Consistent	Direct	Precise	Undetected	High

Outcome	N of studies (n of patients)	Study limitations	Consistency	Directness	Precision	Publication bias	Strength of evidence
AQLQ responder	1 (907)	Low	Unknown (single study)	Direct	Imprecise	Undetected	Moderate (unknown consistency imprecise)
Healthcare utilization							
Rescue medication use, puffs/24 hours	3 (1302)	Low	Inconsistent	Direct	Precise	Undetected	Moderate (inconsistent)
Resource use	0	NA	NA	NA	NA	NA	Insufficient (no evidence)

Abbreviations: ACQ=Asthma Control Questionnaire; ACT=Asthma Control Test; AQLQ=Asthma Quality of Life Questionnaire; AUC=area under curve; ER=emergency room; FVC=forced vital capacity; FEV1=forced expiratory volume in one second; h=hour; ICU=intensive care unit; n=patient sample size; N=number of studies; NA=not applicable

Appendix F. Forest Plots

Figure F-1. Asthma-related acute care visit: intermittent ICS with as-needed SABA vs. as-needed SABA

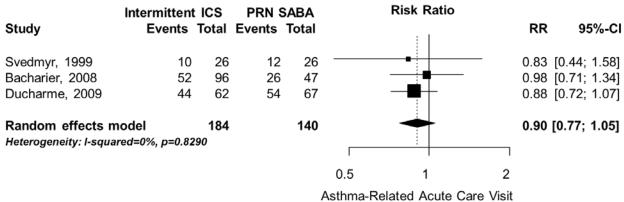


Figure F-2. Hospital admissions due to asthma: intermittent ICS with as-needed SABA vs. as-needed SABA

	Intermittent	ICS	PRN S	ABA		Risk Ratio			
Study	Events 1	Total	Events	Total		: 1		RR	95%-CI
Svedmyr, 1999 Bacharier, 2008	5 2	26 96	4	26 47				0.24 [0.	53; 11.74] .05; 1.29]
Ducharme, 2009	10	62	15	67				0.72 [0.	.35; 1.48]
Random effects n Heterogeneity: I-squa		184 98		140			_	0.77 [0.	06; 9.68]
					0.1	0.5 1 2	10		

Hospital Admission Due To Asthma

Figure F-3. All-cause death: ICS and LABA controller and quick reliever vs. ICS and LABA controller (same dose)

Controller+Quic	k Reliever	Controller	Odds Ratio	
Study E	vents Total E	vents Total	: 1	OR 95%-CI
Vogelmeier, 2005 Rabe, 2006 Atienza, 2013 Patel, 2013	0 1067 1 1107 1 1049 0 151	2 1076 — 2 1138 1 1042 0 152		0.14 [0.01; 2.18] 0.53 [0.05; 5.08] 0.99 [0.06; 15.89]
Random effects model Heterogeneity: I-squared=0%	3374 , p=0.5943	3408		0.43 [0.04; 4.49]
		0.01	0.1 1 10	100
			All-Cause Death	

Figure F-4. Change in ACQ-5 mean score from baseline: ICS and LABA controller and quick reliever vs. ICS and LABA controller (same dose)

Study	TE seTE	Mean difference	MD 95%-CI
Rabe, 2006 Atienza, 2013 Hozawa, 2014	-0.15 0.0332 -0.12 0.0281 -0.37 0.1071		-0.15 [-0.21; -0.09] -0.12 [-0.18; -0.07] -0.37 [-0.58; -0.16]
Random effects model Heterogeneity: I-squared=59.9%, p=0.0825			-0.16 [-0.39; 0.06]
		-0.4 -0.2 0 0.2 0.4	
		Change in ACQ-5 Mean Score	

Figure F-5. Change in on-treatment FEV1 from baseline: ICS and LABA controller and quick reliever vs. ICS and LABA controller (same dose)

Study	TE seTE	Mean difference	MD 95%-CI
Rabe, 2006 Atienza, 2013 Papi, 2013 Patel, 2013	0.08 0.0128 0.04 0.0125 0.00 0.0204 0.15 0.1071 0.04 0.0102	-B-	0.08 [0.06; 0.10] 0.04 [0.02; 0.06] 0.00 [-0.04; 0.04] -0.15 [-0.06; 0.36] 0.04 [0.02; 0.06]
Random effects model Heterogeneity: I-squared=70.3%, p=0.0092			0.04 [0.00; 0.09]
		-0.3 -0.2 -0.1 0 0.1 0.2 0.3 Change in On-Treatment FEV1	

Figure F-6. Change in rescue medication use from baseline, mean inhalations per day: ICS and LABA controller and quick reliever vs. ICS and LABA controller (same dose)

Study	TE seTE	Mean difference	MD 95%-CI
Rabe, 2006 Atienza, 2013 Papi, 2013	-0.20 0.0434 -0.25 0.0536 -0.02 0.0587		-0.20 [-0.28; -0.12] -0.25 [-0.35; -0.15] -0.02 [-0.13; 0.09]
Random effects model Heterogeneity: I-squared=78.4%, p=0.0098			-0.16 [-0.45; 0.14]
		-0.3 -0.2 -0.1 0 0.1 0.2 0. Rescue Medication	3

Figure F-7. All-cause death: ICS and LABA controller and quick reliever vs. ICS and LABA controller (higher dose)

Controlle	r+Quick Relie	Cont	roller		Od	ds Rati	io				
Study	Events Tota	Events	Total			1 :			OR	,	95%-CI
Bousquet, 2007	1 1159 1 1099				_		:				372.38]
Kuna, 2007a Kuna, 2007b	1 1119	1	1119		_	-	_				372.38] 16.00]
Pavord	0 6	3 0	63								
Random effects mod		i	3436						2.72	[0.38;	19.31]
Heterogeneity: I-squared=	0%, ρ=0.0000					+ -					
				0.01	0.1	1	10	100			
					All-Ca	ause De	eath				

Figure F-8. All-cause death: ICS and LABA controller and quick reliever vs. CBP

Controller+C	uick Relief	Controller	Odds Ratio	
Study	Events Total	Events Total	11	OR 95%-CI
Sears, 2008 Louis, 2009 Quirce, 2011	1 772 2 450 0 328	2 766 0 458 0 326		0.51 [0.05; 4.90] 7.54 [0.47; 120.72]
Soes-Peterson, 2011	1 921	0 914		7.33 [0.15; 369.58]
Random effects model Heterogeneity: I-squared=26	2471 %, p=0.2588	2464		2.20 [0.32; 14.96]
			0.01 0.1 1 10 10 All-Cause Death	0

Figure F-9. Change in ACQ-5 mean score from baseline: ICS and LABA controller and quick reliever vs. CBP

Study	TE seTE	Mean difference	MD	95%-CI
Sears, 2008 Louis, 2009 Quirce, 2011 Soes-Peterson, 2011 Riemersma, 2012	-0.02 0.0434 -0.12 0.0408 -0.12 0.0561 -0.09 0.0306 -0.06 0.1276		-0.12 -0.12 -0.09	[-0.10; 0.06] [-0.20; -0.04] [-0.23; -0.01] [-0.15; -0.03] [-0.31; 0.19]
Random effects mod Heterogeneity: I-squared			-0.09	[-0.14; -0.03]
	-(0.3 -0.2 -0.1 0 0.1 0.2	0.3	
		ACQ-5 Mean Score		

Figure F-10. Change in ACQ-7 score from baseline: LAMA vs. placebo as add-on to ICS

		TIO		Plac	cebo	Mean difference		
Study	Total Mean	SD	Total	Mean	SD	: 1	MD	95%-CI
Paggiaro, 2016 Kerstjens Trial 1, 2015 Kerstjens Trial 2, 2015 Hamelmann, 2016	301 -0.685 489 -0.810 485 -0.840 252 -0.961	0.605 0.556	247 240	-0.72 -0.60 -0.77 -0.79	0.60 0.62		-0.21 - 0.07	[-0.07; 0.14] [-0.30; -0.12] [-0.16; 0.02] [-0.30; -0.04]
Random effects mode Heterogeneity: I-squared=			777				-0.10	[-0.28; 0.07]
					-(0.3 -0.2 -0.1 0 0.1 0.2 ACQ-7 Score	2 0.3	

Figure F-11. ACQ-7 responder: LAMA vs. placebo as add-on to ICS

		TIO	Pla	cebo	R	lisk Ratio		
Study	Events	Total	Events	Total		1 :	RR	95%-CI
Ohta, 2015 Paggiaro, 2016 Kerstjens Trial 1, 2015 Kerstjens Trial 2, 2015 Hamelmann, 2016	168 181 336 326 206	228 301 520 508 259	42 91 141 158 95	56 152 265 253 138	_		1.00 1.21 1.03	[0.83; 1.16] [0.86; 1.18] [1.07; 1.38] [0.92; 1.15] [1.02; 1.31]
Random effects mode Heterogeneity: I-squared=	el	1816	93	864			1.08	[0.96; 1.21]
					0.8		.25	
					ACQ	-7 Responder		

Figure F-12. Change in FEV1 peak from baseline: LAMA vs. placebo as add-on to ICS

	Т	IO Pla	acebo	Mean difference	
Study	Total Mean S	D Total Mean	SD		MD 95%-CI
Danwiere 0046	202 0 277 0 2	00 454 0 404	0.000		0.44 [0.00, 0.04]
Paggiaro, 2016	303 0.277 0.33			_	0.14 [0.08; 0.21]
Kerstjens Trial 1, 2015				 	0.22 [0.17; 0.27]
Kerstjens Trial 2, 2015	485 0.266 0.2	15 242 0.075	0.310	-	— 0.19 [0.15; 0.24]
Hamelmann, 2016	251 0.528 0.4	37 137 0.373	0.430		0.16 [0.06; 0.25]
Random effects mode Heterogeneity: I-squared		783		-	0.18 [0.13; 0.24]
rieterogeneity. 1-squareu	-20.7%, p-0.2009				$\dot{\neg}$
			-(0.2 -0.1 0 0.1	0.2
				FEV1 Peak	

Figure F-13. Change in FEV1 trough from baseline: LAMA vs. placebo as add-on to ICS

			TIO		Pla	acebo		Mean	difference		
Study	Total	Mean	SD	Total	Mean	SD			1 :	MD	95%-CI
Bateman, 2011 Lee, 2015	271	0.044	0.353	55	-0.105 0.205	0.340				0.11	[0.07; 0.23] [0.01; 0.21]
Ohta, 2015 Paggiaro, 2016 Kerstjens Trial 1, 2015	303	0.137 0.131 0.132	0.326	154	0.075 0.015 -0.036	0.323				0.12	[-0.02; 0.15] [0.05; 0.18] [0.11; 0.22]
Kerstjens Trial 2, 2015 Hamelmann, 2016		0.143 0.384			-0.012 0.283					0.16	[0.10; 0.21] [0.00; 0.20]
Random effects mode Heterogeneity: I-squared=2		0.4056		1019					•	0.13	[0.10; 0.17]
							-0.2	-0.1	0 0.1 0).2	
								FEV	1 Trough		

Figure F-14. Change in FEV1 AUC from baseline: LAMA vs. placebo as add-on to ICS

			TIO		Pl	acebo		Mean	diffe	rence				
Study	Total	Mean	SD	Total	Mean	SD						MD	95%-CI	I
Paggiaro, 2016 Kerstjens Trial 1, 2015 Kerstjens Trial 2, 2015 Hamelmann, 2016	488 485	0.186 0.178 0.177 0.438	0.310 0.295	250 242	0.048 -0.033 -0.005 0.281	0.320 0.300				_		-0.21 0.18	[0.08; 0.20 [0.16; 0.26 [0.14; 0.23 [0.07; 0.24	[] []
Random effects mode Heterogeneity: I-squared=2		=0.2750		783			Г	1				0.18	[0.13; 0.23]]
							-0.2	-0.1	0	0.1	0.2			
								FE	V1 A	UC				

Figure F-15. Change in FVC peak from baseline: LAMA vs. placebo as add-on to ICS

			TIO		Plac	ebo	Mean difference		
Study	Total N	Mean	SD	Total	Mean	SD	1	, MD	95%-CI
Kerstjens Trial 1, 2015 Kerstjens Trial 2, 2015 Hamelmann, 2016	485 (0.171	0.356 0.340 0.492	242	0.045 0.071 0.331	0.34	-i	0.10	[0.09; 0.19] [0.05; 0.15] [-0.02; 0.18]
Random effects mode Heterogeneity: I-squared=		1621		629				0.11	[0.05; 0.18]
							-0.15 -0.05 0 0.05 0.	1 0.15	
							FVC Peak		

Figure F-16. Change in FVC trough from baseline: LAMA vs. placebo as add-on to ICS

			TIO		PI	acebo		Mean	difference		
Study	Total	Mean	SD	Total	Mean	SD				MD	95%-CI
Bateman, 2011 Ohta, 2015 Kerstjens Trial 1, 2015 Kerstjens Trial 2, 2015 Hamelmann, 2016	228 488 485	0.035 0.145 0.061 0.037 0.330	0.330 0.405 0.420	56 250 242	-0.100 0.122 -0.039 -0.048 0.281	0.330 0.400 0.420		-		0.02 0.10 0.08	[0.04; 0.23] [-0.07; 0.12] [0.04; 0.16] [0.02; 0.15] [-0.06; 0.16]
Random effects mode Heterogeneity: I-squared=).5012		810			-0.2	-0.1		0.08	[0.04; 0.13]
								FV	C Trough		

Figure F-17. Change in FVC AUC from baseline: LAMA vs. placebo as add-on to ICS

			TIO			acebo	Mean di	fference		
Study	Total	Mean	SD	Total	Mean	SD		1 :	MD	95%-CI
Kerstjens Trial 1, 2015	494	0.067	0.371	250	-0.066	0.360		<u>-</u>	0.13	[0.08; 0.19]
Kerstjens Trial 2, 2015	485	0.034	0.385	242	-0.065	0.370		 	0.10	[0.04; 0.16]
Hamelmann, 2016	251	0.320	0.458	137	0.240	0.456		-	- 0.08	[-0.02; 0.18]
Random effects mode		5541		629					0.11	[0.05; 0.17]
rreter og errenty. I oquarea	o, , p o	.0011						 	l	
							-0.15 -0.05	0 0.05 0.1 0.1	5	
							FVC	AUC		

Figure F-18. Difference in rescue medication mean puffs in 24 hours: LAMA vs. placebo as add-on to ICS

			TIO		Pla	acebo	Mean difference		
Study	Total	Mean	SD	Total	Mean	SD	. 1	MD	95%-CI
Bateman, 2011 Ohta, 2015 Paggiaro, 2016 Kerstjens Trial 1, 2015 Kerstjens Trial 2, 2015	208 302 483	-0.074 -0.255 -0.722 -0.974 -0.984	0.984 1.150 1.596	50 153 239	0.294 -0.250 -0.815 -0.962 -0.952	0.770 1.150 1.580		-0.01 0.09 -0.01	[-0.90; 0.16] [-0.26; 0.25] [-0.13; 0.32] [-0.26; 0.23]
Lee, 2015 Hamelmann, 2016	284	-0.674 -0.663	1.606	64	-0.380 -0.372	1.406		-0.29	[-0.25; 0.19] [-0.69; 0.10] [-0.53; -0.05]
Random effects mode Heterogeneity: I-squared=2		0.2161		994			_	-0.08	[-0.23; 0.07]
							-0.5 0 0.5		
							Rescue Medication Use		

Figure F-19. All-cause death: LAMA vs. LABA as add-on to ICS

	LAMA		_ABA	Odds Ratio		
Study	Events Tota	Events	Total	1	OR	95%-CI
Kerstjens Trial 1, 2015	0 526	6 0	275			
Kerstjens Trial 2, 2015	0 506	6 0	266			
Lee, 2015	0 27	1 0	56			
Wechsler, 2015	3 532	2 0	538	+	7.50	[0.78; 72.27]
Random effects mod			1135		7.50	[0.78; 72.27]
Heterogeneity: I-squared	=NaN%, p=1.000)			'	
				0.1 0.512	10	
				All-Cause Dea	ath	

Figure F-20. Asthma-specific death: LAMA vs. LABA as add-on to ICS

Study	LA Events To	MA otal		_ABA Total		0	dds Ra	tio	OR	:	95%-CI
Kerstjens Trial 1, 2015 Kerstjens Trial 2, 2015 Lee, 2015 Wechsler, 2015	0	526 506 271 532	0 0 0	275 266 56 538	; ;				7.49	[0.47;	119.86]
Random effects mode Heterogeneity: I-squared=I	-	335 00		1135					7.49	[0.47;	119.86]
					0.01	0.1 Asthma	1 -Specifi	10 c Death	100		

Figure F-21. Change in FEV1 trough from baseline: LAMA vs. LABA as add-on to ICS

Study	TE seTE	Mean difference	MD	95%-CI
•				
Peters, 2010	0.12 0.1380	 •	0.12 [-	0.15; 0.39]
Bateman, 2011	-0.02 0.0408	■	-0.02 [-	0.10; 0.06]
Lee, 2015	-0.05 0.0536	- ■ -	-0.05 [-	0.15; 0.05]
Kerstjens Trial 1, 2015	0.05 0.0281	† :■ -	0.05 [0.00; 0.10]
Kerstjens Trial 2, 2015	0.05 0.0255		0.05 [0	0.00; 0.10]
Wechsler, 2015	-0.02 0.0357	-■	-0.02 [-	0.09; 0.04]
Random effects mode			0.02 [-0	0.03; 0.06]
Heterogeneity: I-squared=	31.5%, p=0.1993			
		-0.2 0 0.2		
		FEV1 Trough		

Figure F-22. Change in FEV1 % predicted from baseline: LAMA vs. LABA as add-on to ICS

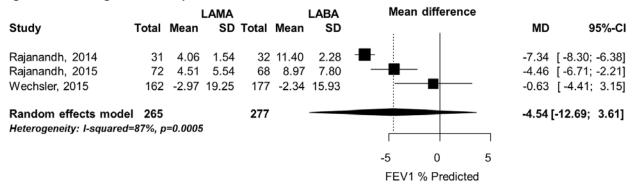


Figure F-23. Change in FVC trough from baseline: LAMA vs. LABA as add-on to ICS

Study	LAMA Total Mean SD	LABA Total Mean SD	Mean difference	MD 95%-CI
Bateman, 2011 Kerstjens Trial 1, 2015 Kerstjens Trial 2, 2015		259 0.028 0.45		0.01 [-0.08; 0.11] 0.03 [-0.03; 0.10] 0.02 [-0.05; 0.08]
Random effects mod Heterogeneity: I-squared=		644 -0.1	-0.05 0 0.05	0.02 [0.00; 0.05]
		0.1	FVC Trough	0.1

Figure F-24. Change in AQLQ score from baseline: LAMA vs. LABA as add-on to ICS

			LAMA		L	ABA	Mean difference		
Study	Total	Mean	SD	Total	Mean	SD		MD	95%-CI
Peters, 2010	64	0.28	0.990	58	0.50	1 12		-0.22	[-0.60; 0.16]
Wechsler, 2015	180		1.340				<u></u>		[-0.23; 0.33]
Kerstjens Trial 1, 2015	488	0.69	0.855	260	0.76	0.85	— —	-0.07	[-0.20; 0.06]
Kerstjens Trial 2, 2015	485	0.79	0.905	250	0.84	0.83		-0.05	[-0.18; 0.08]
Random effects mode Heterogeneity: I-squared=		0.7178		765			+	-0.06	[-0.15; 0.03]
							-0.4 -0.2 0 0.2 0.4 AQLQ Score		
							AGEG OCOIG		

Figure F-25. Difference in rescue medication mean puffs in 24 hours: LAMA vs. LABA as add-on to ICS

			LAMA		L	ABA		Mean	differe	ence			
Study	Total	Mean	SD	Total	Mean	SD						MD	95%-CI
Bateman, 2011	128	-0.074	2.180	134	-0.273	2.13			-	÷ _		0.20	[-0.32; 0.72]
Rajanandh, 2014	31	-0.660	1.000	32	-2.040	1.00				-	⊢_ 1	.38	[0.89; 1.87]
Rajanandh, 2015	72	-1.130	0.980	68	-3.160	0.88			\perp			2.03	[1.72; 2.34]
Wechsler, 2015	83	-1.080	2.210	103	-1.030	2.37		_	₹_	i	-(0.05	[-0.71; 0.61]
Kerstjens Trial 1, 2015	483	-0.974	1.596	254	-1.416	1.59				ļ.	().44	[0.20; 0.68]
Kerstjens Trial 2, 2015	474	-0.984	1.430	247	-1.078	1.43			■		(0.09	[-0.13; 0.31]
Lee, 2015	284	-0.701	1.580	57	-0.840	1.34					().14	[-0.25; 0.53]
Random effects mode	el 1555			895							0	.61	[-0.12; 1.35]
Heterogeneity: I-squared=	95.2%, p	<0.0001								<u> </u>			
							1	- 1	ı	ı	ı		
							-2	-1	0	1	2		
							R	escue	Medicat	ion Us	е		

Figure F-26. Change in ACQ-7 score from baseline: LAMA added to ICS and LABA vs. ICS and LABA

			LAMA		DI	acebo	Mean difference		
Study	Total	Mean		Total	Mean	SD	: I	MD	95%-CI
Kerstjens Trial 1, 2012 Kerstjens Trial 2, 2012 Hamelmann, 2016	216	1.990 2.030 1.281	0.779	232	2.110 2.160 1.234	0.777		-0.13	[-0.27; 0.03] [-0.27; 0.01] [-0.11; 0.20]
Random effects mode	I 711			590	1.234	-			[-0.31; 0.17]
Heterogeneity: I-squared=3	19.5%, p)=U.191 <i>/</i>					-0.2 -0.1 0 0.1 0.2		
							ACQ-7 Mean		

Figure F-27. Change in FEV1 peak from baseline: LAMA added to ICS and LABA vs. ICS and LABA

		LAMA		PI	acebo		Mean	differ	ence			
Study	Total Me	an SD	Total	Mean	SD			1	:	M	D	95%-CI
Kerstjens Trial 1, 2012 Kerstjens Trial 2, 2012 Hamelmann, 2016	216 0.3	867 0.400 897 0.382 839 0.514	232	0.295 0.245 0.438	0.381					 0.1	5 [0.00; 0.14] 0.08; 0.22] 0.01; 0.21]
Random effects mode Heterogeneity: I-squared=		936	586				T	_		0.1	1 [0.00; 0.22]
						-0.2	-0.1	0	0.1	0.2		
							FE	V1 Pe	ak			

Figure F-28. Change in FEV1 trough from baseline: LAMA added to ICS and LABA vs. ICS and LABA

		LAMA		PI	acebo	Mean difference		
Study	Total N	Mean SD	Total	Mean	SD	1 .	MD	95%-CI
Kerstjens Trial 1, 2012 Kerstjens Trial 2, 2012		0.129		0.087 0.063				[-0.03; 0.11] [0.03; 0.16]
Hamelmann, 2016	256 0	0.314 0.543	132	0.230	0.551	-	-0.08	[-0.03; 0.20]
Random effects mode Heterogeneity: I-squared=		656	586				0.07	[0.00; 0.14]
						-0.1 0 0.1		
						FEV1 Trough		

Figure F-29. Change in FEV1 AUC from baseline: LAMA added to ICS and LABA vs. ICS and LABA

			LAMA		PI	acebo		Mea	n diffe	ence		
Study	Total	Mean	SD	Total	Mean	SD					MD	95%-CI
Kerstjens Trial 1, 2012 Kerstjens Trial 2, 2012 Hamelmann, 2016	216	0.289 0.310 0.436	0.353	232		0.372 0.350 0.494					0.14	[0.00; 0.14] [0.07; 0.20] [0.00; 0.20]
Random effects mode Heterogeneity: I-squared=0		.3976		586				-	-		0.10	[0.01; 0.19]
						-	0.2	-0.1	0	0.1	0.2	
								FI	Ε\/1 ΔΙ	IC		

Figure F-30. Change in FVC peak from baseline: LAMA added to ICS and LABA vs. ICS and LABA

		LAMA		PI	acebo		Mean	differ	ence		
Study	Total Mear	SD.	Total	Mean	SD			1	:	ME	95%-CI
Kerstjens Trial 1, 2012 Kerstjens Trial 2, 2012 Hamelmann, 2016	237 0.462 216 0.420 256 0.356	0.500	232	0.337 0.305 0.279	0.503					0.12	2 [0.03; 0.22] 2 [0.02; 0.21] 3 [-0.04; 0.19]
Random effects mode Heterogeneity: I-squared=0			586							0.11	[0.05; 0.17]
						-0.2	-0.1	0	0.1	0.2	
							F۱	/C Pea	ak		

Figure F-31. Change in FVC trough from baseline: LAMA added to ICS and LABA vs. ICS and LABA

	LAMA	Placebo	Mean difference	
Study	Total Mean SD Total	l Mean SD	1 :	MD 95%-CI
Kerstjens Trial 1, 2012 Kerstjens Trial 2, 2012 Hamelmann, 2016	216 0.142 0.470 23	2 0.062 0.477 2 0.072 0.472 2 0.145 0.570		0.11 [0.02; 0.20] 0.07 [-0.02; 0.16] 0.08 [-0.04; 0.20]
Random effects mode Heterogeneity: I-squared=0		3		0.09 [0.03; 0.15]
			-0.1 0 0.1	
			FVC Trough	

Figure F-32. Change in FVC AUC from baseline: LAMA added to ICS and LABA vs. ICS and LABA

	LAMA	Place	Mean difference	
Study	Total Mean SI	Total Mean	5 D :	MD 95%-CI
Kerstjens Trial 1, 2012 Kerstjens Trial 2, 2012 Hamelmann, 2016	237 0.344 0.462 216 0.299 0.470 256 0.244 0.534	232 0.190 0.4	72	0.12 [0.04; 0.21] 0.11 [0.02; 0.20] 0.07 [-0.04; 0.18]
Random effects mode	el 709	586	" -	0.10 [0.04; 0.17]
rieterogeneny. Psytaireu-	υ/ο, μ=υ./300		-0.2 -0.1 0 0.1	0.2
			FVC AUC	

Figure F-33. Difference in rescue medication mean puffs in 24 hours: LAMA added to ICS and LABA vs. ICS and LABA

		LAMA		PI	acebo	Mean difference		
Study	Total Mea	n SD	Total	Mean	SD	: I	MD	95%-CI
Kerstjens Trial 1, 2012 Kerstjens Trial 2, 2012 Hamelmann, 2016		4 2.396	232	-0.714 -0.881 -0.482	2.407		-0.26	[-0.47; 0.29] [-0.71; 0.18] [-0.32; 0.26]
Random effects mode Heterogeneity: I-squared=	el 707		585					[-0.37; 0.18]
						-0.6 -0.4 -0.2 0 0.2 0.4 0.6 Rescue Medication	6	